Kangaroo: Lossless Self-Speculative Decoding via Double Early Exiting

Nov 25, 2024 | By Bud Ecosystem

In the research paper “Kangaroo: Lossless Self-Speculative Decoding via Double Early Exiting,” the authors introduce a new framework called Kangaroo designed to make large language models (LLMs) run faster. This framework enables the training of a smaller, lightweight model in a cost-effective way.

This new framework is introduced to speedup the text generation process of LLMs, especially when using a method called Speculative Decoding (SD). Here’s a simplified breakdown of the challenges the authors wanted to solve with their research;

  1. Memory Bandwidth Bottleneck: Even though LLMs do a lot of mathematical calculations, the real bottleneck or slowdown comes from the time spent moving data in and out (read/write operations) of the memory where the model’s weights are kept.
  2. Improving Decoding Speed: To make text generation faster, earlier research proposed a method called Speculative Decoding (SD). This involves a “draft” model that predicts several possible next words in parallel, instead of just one at a time. The goal is to quickly generate multiple words and then verify which ones are good. However, this approach has two main issues:
  3. Draft Model Training: Creating a draft model that can predict well often requires significant resources and time, which isn’t always practical.
  4. Draft Model Inference Speed: If the draft model itself is slow, it doesn’t help much in speeding up the text generation.
  5. Self-Drafting Models: Some methods, like LLMA and REST, try to address these issues by generating draft tokens using different strategies without needing a separate draft model. Medusa, for example, uses additional neural network components to create draft tokens, but it still has limitations in the effectiveness of these tokens and their generation speed.

Kangaroo Framework

The authors tackled the challenges of speeding up text generation in large language models using their new framework, Kangaroo. Here’s how they addressed the issues:

  • Autoregressive Self-Draft Model: They designed a lightweight and efficient model called an “autoregressive self-draft model.” This model is built on a fixed, shallow part of the large LLM and uses a small, additional adapter module.

The adapter network, which includes only one multi-head attention layer and two normalisation layers, has only 11.3% of the parameters compared to Medusa-1’s heads. Despite its simplicity, this design proves to be both efficient and powerful.

  • Early Exiting Mechanism: To further reduce latency, they implemented an early exiting mechanism during the draft token generation phase. This mechanism allows the model to exit early from processing when it’s generating simpler tokens, thus avoiding unnecessary computation for more complex tokens.
  • Self-Speculative Decoding Framework: They introduced the Kangaroo framework, which uses a double early-exit mechanism. First, the smaller self-draft model exits early from the shallow layers of the large LLM and connects to the adapter network to generate draft tokens. Second, it applies early exiting during the drafting phase to minimize computational overhead on difficult tokens.
  • Low-Cost Training and Deployment: Kangaroo offers a cost-effective way to train a lightweight model. Since the self-draft model and the large LLM share some of the KV cache and computation, the primary additional requirement for deployment is a small adapter network.
  • Performance Validation: The authors validated Kangaroo’s effectiveness through experiments on the Spec-Bench benchmark. Kangaroo achieved up to a 1.7× speedup compared to Medusa-1 while using 88.7% fewer additional parameters (67 million vs. 591 million).

In summary, the authors improved text generation speed by creating a lightweight model with a simple architecture and an efficient early exiting mechanism, thereby reducing computational costs and latency while maintaining performance

Tags:

Efficient Expert Pruning

Evolutionary Strategies

SMoE models

Sparse Mixture-of-Experts

Bud Ecosystem

Our vision is to simplify intelligence—starting with understanding and defining what intelligence is, and extending to simplifying complex models and their underlying infrastructure.

Related Blogs

A Survey on LLM Guardrails: Part 2, Guardrail Testing, Validating, Tools and Frameworks
A Survey on LLM Guardrails: Part 2, Guardrail Testing, Validating, Tools and Frameworks

Part 1 : Methods, Best Practices and Optimisations Part 2: Guardrail Testing, Validating, Tools and Frameworks (This article) As large language models (LLMs) become more powerful, robust guardrail systems are essential to ensure their outputs remain safe and policy-compliant. Guardrails are control mechanisms (rules, filters, classifiers, etc.) that operate during deployment to monitor and constrain an […]

A Survey on LLM Guardrails: Part 1, Methods, Best Practices and Optimisations
A Survey on LLM Guardrails: Part 1, Methods, Best Practices and Optimisations

Part 1 : Methods, Best Practices and Optimisations (This article)Part 2: Guardrail Testing, Validating, Tools and Frameworks As organizations embrace large language models (LLMs) in critical applications, guardrails have become essential to ensure safe and compliant model behavior. Guardrails are external control mechanisms that monitor and filter LLM inputs and outputs in real time, enforcing […]

Sovereign AI Framework for Developing Nations
Sovereign AI Framework for Developing Nations

The global AI landscape shows a significant gap in infrastructure between developed and developing countries. For instance, the United States has about 21 times more data center capacity than India. This research shows that software-based optimization strategies, architectural innovations, and alternative deployment models can greatly reduce reliance on large infrastructure. By analyzing current capacity data, […]

Automating License Analysis: A Small Feature That Solves a Big Problem
Automating License Analysis: A Small Feature That Solves a Big Problem

In the fast-moving world of Generative AI, where innovation often outpaces regulation, licensing has emerged as an increasingly critical—yet overlooked—challenge. Every AI model you use, whether open-source or proprietary, comes with its own set of licensing terms, permissions, and limitations. These licenses determine what you can do with a model, who can use it, how […]