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The global AI landscape shows a significant gap in infrastructure between developed 

and developing countries. For instance, the United States has about 21 times more data 
center capacity than India. This research shows that software-based optimization 
strategies, architectural innovations, and alternative deployment models can greatly 
reduce reliance on large infrastructure. By analyzing current capacity data, emerging 
optimization techniques, and successful examples like DeepSeek’s cost-effective 
training methods, this paper demonstrates that developing countries can achieve 
competitive AI capabilities through strategic software innovations—such as model 
architecture improvements, federated inference systems, and resource-aware 
deployment strategies—reducing reliance on massive infrastructure investments and 
helping to close the 21x infrastructure gap, thereby enabling fuller participation in the 
global AI ecosystem. 
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Executive Summary 
The global AI landscape shows a significant gap in infrastructure between developed 

and developing countries. For instance, the United States has about 21 times more data 

center capacity than India. This research shows that software-based optimization 

strategies, architectural innovations, and alternative deployment models can greatly 

reduce reliance on large infrastructure. By analyzing current capacity data, emerging 

optimization techniques, and successful examples like DeepSeek’s cost-effective 

training methods, this paper demonstrates that developing countries can achieve 

competitive AI capabilities through strategic software innovations—such as model 

architecture improvements, federated inference systems, and resource-aware 

deployment strategies—reducing reliance on massive infrastructure investments and 

helping to close the 21x infrastructure gap, thereby enabling fuller participation in the 

global AI ecosystem. 

Key objectives of this Whitepaper 

To deliver a policy-oriented, technically grounded roadmap that enables developing 

nations to achieve functional parity with AI leaders by: 

1.​ Benchmarking the Global Compute Divide: Quantify the present gap in 

datacenter power (e.g., ≈21 GW in the U.S. vs. ≈1 GW in India), accelerator 

inventory, energy costs, and talent pools across representative developed and 

developing countries.​

 

2.​ Diagnosing True Constraints: Distinguish bottlenecks that require 

capital-heavy fixes (power grids, fabs) from those solvable through software 

(kernel fusion, quantisation, alternative architectures).​

 

3.​ Curating High-Leverage Software Levers: Catalogue and experimentally 

validate optimisations—FlashAttention-class kernels, BitNet-style extreme 

quantisation, Mamba/SSM architectures, DeepSeek-style low-cost 

training—that together can deliver ≥ 20× aggregate efficiency. 
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4.​ Formulating the “Chandrayaan Way” Framework: Translate India’s 

frugal-innovation ethos into a repeatable playbook: design for CPU + edge first, 

leverage community LoRA/adapters, and federate inference to tap existing client 

hardware.​

 

5.​ Mapping a Phased Implementation Path: Provide a five-year schedule, 

investment range, and KPI dashboard to track progress toward sovereignty in AI 

capability without trillion-dollar hardware outlays. 

 
The ultimate aim is to demonstrate that, through coordinated software innovation, 

heterogeneous hardware utilisation, and risk-aware policy, resource-constrained 

nations can achieve parity in practical AI outcomes with far lower capital outlay 

than traditional “hardware-first” approaches require. 

 

2. Introduction: Towards AI Sovereignty 
Sovereign AI refers to a nation’s full control over the entire AI stack—including 

infrastructure (compute, storage, networking), data (collection, processing, 

governance), algorithms (models, frameworks, applications), and talent (researchers, 

engineers, operators). It embodies technological self-determination in the AI era. The 

strategic value of sovereign AI goes beyond technology. Nations with sovereign AI 

capabilities can: 

1.​ Preserve cultural and linguistic identity by developing AI systems that reflect 

and understand local contexts.​

 

2.​ Ensure data sovereignty by keeping citizen data within national borders.​

 

3.​ Foster economic growth through homegrown AI innovation and reduced 

reliance on foreign technology.​

 

 
6 



                                                                                                                                            

4.​ Protect national security by securing critical AI infrastructure​

 

5.​ Define AI governance based on national values and priorities 

However, current AI development is largely dominated by a few major technology 

companies and powerful nations, creating significant risks for developing countries. 

The Cost of Dependency 

1.​ Economic drain: Relying on foreign cloud-based AI services can cost developing 

countries billions in foreign exchange each year​

 

2.​ Data colonialism: When citizen data is processed abroad, it compromises 

national data sovereignty​

 

3.​ Cultural erasure: AI models trained predominantly on Western data often fail to 

reflect local languages, values, and traditions​

 

4.​ Technological lock-in: Dependence on proprietary AI systems stifles local 

innovation and limits long-term flexibility​

 

5.​ Security vulnerabilities: Outsourcing critical AI infrastructure increases 

exposure to foreign interference and cybersecurity threats 

Sovereign AI is not merely a technological aspiration; it is a fundamental matter of 

economic independence and national security.2 Nations with robust sovereign AI 

capabilities gain significant advantages. They can promote digital self-determination, 

ensuring that algorithmic decision-making respects and protects citizen rights. This 

builds trust in AI applications deployed in sensitive sectors like healthcare, defense, 

education, and public safety. Furthermore, it allows nations to maintain economic 

leverage in global technology markets and support industrial competitiveness through 

continuous innovation.2 The ability to control critical digital infrastructure and align AI 

systems with democratic values is foundational for building thriving local economic 

ecosystems around AI innovation, fostering self-reliance and long-term prosperity.2 
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The broad scope of principles underlying Sovereign AI, encompassing strategic 

interests, cultural values, legal frameworks, economic independence, and national 

security, indicates that nations are not simply seeking to acquire AI technology. 

Instead, the objective is to deeply integrate AI within their societal fabric and 

governance structures, safeguarding their unique values and ensuring long-term 

self-determination. This approach signifies a comprehensive national strategy that 

extends far beyond technical control, embedding AI within a nation's identity and 

resilience. 

AI and the New Geopolitics 

The world is currently experiencing a profound shift in international relations, moving 

away from multilateralism towards a more competitive landscape characterized by 

unilateralism and bilateralism. Within this dynamic, AI has rapidly emerged as a 

primary battleground for nations vying for economic and security leadership.3 The 

intensifying competition between major powers, particularly the United States and 

China, in the realm of AI is fundamentally reshaping bilateral relations and redefining 

the global balance of power. This compels nations worldwide to adapt to a rapidly 

evolving and uncertain international environment.4 

The pursuit of Sovereign AI is thus driven by a dual imperative: defensive needs and 

offensive ambitions. On the defensive side, nations seek to protect their sensitive data, 

intellectual property, and critical infrastructure from foreign influence or disruption. 

This includes mitigating dependence on foreign-controlled environments and 

reducing exposure to supply chain disruptions or geopolitical tensions. Concurrently, 

there are significant offensive ambitions, such as gaining economic leverage, achieving 

global leadership in key AI sectors, and securing strategic advantage in emerging 

technologies. This duality highlights AI as a critical tool for both national resilience 

and the projection of geopolitical influence. 

 
AI has become a pivotal force in the new geopolitical arena—driving both 

competition and national strategy. Nations are racing to harness AI not just 

for defense, but to assert dominance on the world stage 
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3. Global Landscape of AI Initiatives and 
Investments 
The global race for AI supremacy is marked by substantial strategic investments and 

diverse national initiatives. Nations are committing significant resources to develop 

their AI capabilities, recognizing AI as a cornerstone of future economic prosperity and 

national security.  

The approaches to fostering AI capabilities vary significantly across leading nations, 

reflecting their unique economic structures, political systems, and strategic priorities. 

 

Image 1: Investments on AI by countries from 2013 to 2024 

United States: The U.S. AI policy, particularly under recent administrations, 

emphasizes a "forward-leaning, pro-innovation, and pro-competition mindset".5 The 

federal government plays a crucial role in supporting AI research and development 

(R&D) in areas where private sector investment might be insufficient, focusing on 

national security, public infrastructure resilience, and scientific discovery.6 Key 

initiatives include the White House Office of Management & Budget's (OMB) AI Use & 

Procurement Requirements for federal agencies, designed to make agencies more agile 
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and cost-effective.5 The Department of Energy has also announced 16 potential federal 

sites for rapid AI data center construction, with operations targeted by the end of 2027 

through public-private partnerships.5 An Executive Order on Coal-Powered AI 

Infrastructure has been issued to identify regions with suitable coal infrastructure to 

meet the escalating electricity needs of AI data centers.5 The U.S. aims to maintain its 

AI dominance through strategic R&D funding, grand challenges across federal 

agencies, and procurement reform that streamlines the integration of AI solutions into 

government operations.7 Private AI investment in the U.S. reached an astounding 

$109.1 billion in 2024, significantly surpassing other nations; this figure is nearly 12 

times higher than China's and 24 times the UK's private AI investment.8 Cumulatively, 

from 2013 to 2024, total private AI investment in the U.S. amounted to $470.9 billion.10 

China: China is driven by an ambitious strategic vision to become the global leader in 

AI innovation by 2030, a goal articulated in key policy frameworks such as the 

Next-Generation AI Development Plan (2017) and the Made in China 2025 initiative.11 A 

state fund worth 60 billion yuan (approximately US$8.2 billion) was launched in 

January by the Ministry of Industry and Information Technology (MIIT) and the 

Ministry of Finance, specifically for early-stage AI projects. This fund targets the entire 

AI supply chain, encompassing computing power, algorithms, data, and applications.12 

This initiative contributes to a broader national plan to cultivate a $150 billion AI 

industry by 2030.12 China demonstrated early commitment to AI dominance, 

accounting for 48% of global AI startup funding in 2017, surpassing the U.S. share of 

38%.12 From 2013 to 2024, China's total private AI investment stood at $119.3 billion.10 

European Union (EU): The EU's AI Continent Action Plan outlines an ambitious 

roadmap to position Europe as a global AI leader, supported by a substantial €200 

billion program known as the InvestAI Initiative.13 A central pillar of this plan is 

building large-scale AI data and computing infrastructure, including the establishment 

of at least 13 "AI Factories" and "AI Gigafactories" across Europe. These facilities are 

designed to be equipped with approximately 100,000 state-of-the-art AI chips to train 

and develop complex AI models.13 The proposed "Cloud and AI Development Act" aims 

to triple the EU's data center capacity within the next five to seven years by addressing 

obstacles like suitable locations and energy resources.13 Other key pillars of the EU 

strategy include increasing access to high-quality data through a "Data Union 
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Strategy," fostering AI adoption in strategic sectors via an "Apply AI Strategy," and 

strengthening AI skills and talent through various educational and training 

programs.13 

United Kingdom (UK): The UK's AI strategy, detailed in the AI Opportunities Action 

Plan (unveiled in January 2025), focuses on enhancing AI infrastructure, attracting 

investment, and integrating AI technologies into public services with the goal of 

positioning the UK as a global leader in the field.15 The UK is notably "doubling down 

on US investment," having secured significant commitments from major U.S. firms. 

Microsoft, for instance, committed £2.5 billion over three years to expand its 

next-generation AI data center infrastructure, while Amazon is investing £8 billion 

over five years for data center construction. Other U.S. firms like CyrusOne, 

ServiceNow, Cloud HQ, and CoreWeave have pledged £6.3 billion in data center 

infrastructure investments.16 Initiatives like "AI Growth Zones" are designed to 

encourage new data center construction in suitable areas, and efforts are underway to 

optimize access to valuable public datasets for AI innovation.15 

Canada: Canada announced a substantial $2.4 billion package in Budget 2024 to secure 

its AI advantage, with $2 billion specifically allocated to building and providing access 

to computing capabilities and technological infrastructure for its AI researchers, 

startups, and scale-ups.17 The "Canadian Sovereign AI Compute Strategy" is a 

cornerstone of this investment, comprising up to $700 million to mobilize private 

sector investment, up to $1 billion for building public supercomputing infrastructure 

(including a $705 million AI Sovereign Compute Infrastructure Program), and a $300 

million AI Compute Access Fund to support the purchase of AI compute resources by 

Canadian innovators and businesses.17 Canada holds the distinction of being the first 

country to establish a national AI strategy in 2017.17 From 2013 to 2024, Canada 

attracted $15.3 billion in private AI investments.10 

Japan: Japan's 2025 AI governance strategy has shifted towards a pragmatic 

"light-touch" approach, aiming to establish the country as "the most AI-friendly 

country in the world".19 This framework relies heavily on existing sector-specific laws 

and voluntary risk mitigation by businesses, rather than imposing sweeping 

AI-specific regulations.19 In February 2025, the government submitted a draft AI Bill 

designed to promote AI research, development, and utilization with minimal explicit 

 
11 



                                                                                                                                            

penalties for the private sector.19 Initiatives such as the Ministry of Economy, Trade and 

Industry's (METI) Generative AI Accelerator Challenge (GENIAC) aim to harness AI for 

economic growth and societal transformation.19 Japan actively supports Nvidia-led 

AI-computing infrastructure, collaborating with domestic cloud leaders like SoftBank 

and GMO Internet Group.19 Notably, SoftBank CEO Masayoshi Son and OpenAI CEO 

Sam Altman announced a joint venture to launch AI services in Japan, underpinned by 

a US$3 billion annual licensing agreement for OpenAI technology.19 From 2013 to 2024, 

Japan attracted $5.9 billion in private AI investments.10 

South Korea: South Korea has articulated a clear ambition to achieve "AI G3 Status," 

positioning itself as a top-three AI nation by 2030.20 A plan approved in April allocates 

over 1 trillion won (approximately $1.3 billion) this year to secure 10,000 

high-performance Graphics Processing Units (GPUs), which will be distributed to 

domestic firms, universities, and research institutes developing AI foundation 

models.21 Key projects include establishing a "National AI Computing Center," 

expanding GPU capacity to 15 times its current size, supporting the commercialization 

of domestically produced AI chips, and investing 193.6 billion won for Korea's "World 

Best LLM (large language model) Project".20 The private sector is expected to invest 

KRW 65 trillion (approximately $47 billion) in AI development over the next four years 

(2024-2027), with active government support.20 From 2013 to 2024, South Korea 

attracted $7.3 billion in private AI investments.10 

India: India is rapidly building a robust AI computing and semiconductor 

infrastructure to support its burgeoning digital economy. The IndiaAI Mission, 

approved in 2024, allocates ₹10,300 crore (approximately $1.2 billion) over five years to 

strengthen AI capabilities.22 A significant focus of this mission is the development of a 

high-end common computing facility equipped with 18,693 GPUs, making it one of the 

most extensive AI compute infrastructures globally. India also aims to develop its own 

indigenous GPU within the next three to five years to reduce reliance on imported 

technology.22 The "BharatGen" initiative, launched in 2024, stands as the world's first 

government-funded multimodal Large Language Model (LLM) initiative, designed to 

enhance public service delivery and citizen engagement.22 India also emphasizes an 

"AI-Ready Data Initiative" to provide anonymized datasets for startups and researchers, 

and leverages its Digital Public Infrastructure (DPI) model to foster innovation.22 From 
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2013 to 2024, India attracted $11.1 billion in private AI investments.10 

United Arab Emirates (UAE): The UAE is rapidly emerging as a global AI leader, aiming 

to become a top AI hub by 2031. AI is projected to contribute US$96 billion to its 

economy by 2030, representing 14% of its GDP.24 The "UAE Strategy for Artificial 

Intelligence," launched in 2017, focuses on integrating AI across key sectors such as 

transportation, renewable energy, education, health, and the environment.25 Significant 

investments include Silver Lake's US$800 million in G42 and DAMAC Properties' 

US$20 billion investment in U.S. data centers.24 The UAE is also expanding AI education 

through institutions like MBZUAI and actively integrating AI into public services, 

including traffic management and chatbots.24 From 2013 to 2024, the UAE attracted 

$3.7 billion in private AI investments.10 

Saudi Arabia: Saudi Arabia's Vision 2030 drives a major shift towards AI and 

data-driven innovation, aiming to reduce oil dependence and foster high-tech 

industries. The Kingdom aspires to be among the top 15 nations in AI by 2030 and to 

become an exporter of AI-driven solutions.26 Project Transcendence, a landmark 

US$100 billion initiative, is designed to accelerate AI and advanced technology 

adoption.26 At the LEAP 2025 technology conference in Riyadh, Saudi Arabia 

announced over $14.9 billion in AI investments.27 A particularly significant 

commitment includes a $1.5 billion investment from U.S. AI chip startup Groq to 

establish the world's largest AI inferencing data center in Dammam, a collaboration 

with Aramco Digital.27 Saudi Arabia is also partnering with Google, with a 

co-investment of US$5-10 billion for AI-focused projects, including the development of 

Arabic-language AI models.26 

 

Image 2: Leaders in AI Investments for 2024 
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3.1 Public-Private Partnerships 
Many nations are actively fostering collaboration between government, industry, and 

academia to accelerate AI development. The U.S. emphasizes a "collaborative approach 

among policymakers, industry leaders, and global partners" to ensure responsible 

development and continued innovation.28 Canada's strategy explicitly involves 

mobilizing private sector investment alongside building public supercomputing 

infrastructure.18 Japan's government supports Nvidia-led infrastructure initiatives, and 

the joint venture between SoftBank and OpenAI exemplifies significant private sector 

collaboration.19 Similarly, the UAE and Saudi Arabia are aggressively pursuing 

public-private partnerships and attracting major global tech firms to invest in and 

contribute to their burgeoning AI ecosystems.24 

The comparison of these national approaches reveals that nations are pursuing AI 

sovereignty through fundamentally different strategic models. Some, like China and 

South Korea, adopt a state-led comprehensive investment model, where government 

funds are directed across the entire AI supply chain. In contrast, the U.S. relies more 

heavily on market-driven innovation, with strategic government support focusing on 

foundational research and procurement. Other nations, such as the UK and Japan, 

emphasize strategic partnerships and attracting foreign investment to bolster their 

capabilities. Meanwhile, countries like Canada, the EU, and India are focusing on 

significant domestic infrastructure build-out coupled with intellectual property 

protection. This divergence indicates that "Sovereign AI" is not a monolithic concept 

but rather a spectrum of national strategies tailored to each country's unique 

economic, political, and technological realities. 

A common thread across these diverse strategies is the prioritization of investments in 

foundational elements such as compute infrastructure (GPUs, data centers) and talent 

development. South Korea's massive GPU acquisition, India's plans for indigenous GPU 

development and large compute facilities, the EU's "AI Gigafactories," Canada's 

multi-billion dollar compute strategy, and Saudi Arabia's commitment to the world's 

largest inferencing data center all underscore a consensus on the critical importance of 

compute power. Similarly, talent development receives significant attention in the 

strategies of the EU, U.S., Canada, India, UAE, and Saudi Arabia. This shared 

understanding suggests that controlling the means of AI production (compute) and 
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cultivating the necessary human capital are considered non-negotiable for achieving 

national AI capabilities. 

The scale and nature of these national AI investments are direct reflections of 

intensifying geopolitical competition. Nations are actively vying for technological 

leadership and economic dominance. China's substantial AI fund, explicitly launched 

amidst rising global competition and stricter U.S. export controls, illustrates this 

competitive dynamic.12 The description of AI as a "battlefield for nations competing for 

economic and security leadership" further emphasizes this.3 The sheer volume of 

investment, particularly the vast disparity in private AI investment between the U.S. 

and other nations, underscores the ongoing "race" for AI supremacy. This indicates 

that these investments are not solely aimed at fostering economic growth but are 

strategically designed to secure a critical advantage in a rapidly evolving global power 

dynamic. 

Key National AI Initiatives and Investment Commitments (Selected Countries, 
2024-2025) 

Country Key AI Strategy/Plan Total Investment (if 
specified, with 
currency/timeframe) 

Primary 
Investment 
Focus 

Noteworthy 
Infrastructure 
Projects/Targets 

Key Public-Private 
Partnerships/Collab
orations 

United States Forward-leaning, 
pro-innovation, 
pro-competition 
mindset; National AI 
R&D Strategic Plan 

$470.9B (private, 
2013-2024 sum); 
$109.1B (private, 2024) 

Foundational 
R&D, national 
security, public 
infrastructure, 
talent, 
procurement 
reform 

16 potential DOE 
sites for AI data 
centers by late 
2025; 
Coal-powered AI 
infrastructure 

White House OMB, 
DOE, NIST, AISIC, 
INASI 

China Next-Generation AI 
Development Plan 
(by 2030); Made in 
China 2025 

$150B (AI industry by 
2030); $8.2B (state 
fund, early-stage AI 
projects); $119.3B 
(private, 2013-2024 
sum) 

Entire AI supply 
chain (compute, 
algorithms, data, 
applications), 
indigenous 
models, 
innovation hubs 

N/A (focus on 
domestic 
capabilities across 
stack) 

Digital Silk Road 

European 
Union 

AI Continent Action 
Plan 

€200B (InvestAI 
Initiative) 

Large-scale AI 
data & 
computing 
infrastructure, 
data access, AI 
adoption, skills & 
talent 

13 "AI Factories," 
"AI Gigafactories" 
(100,000 AI chips); 
Triple data center 
capacity (5-7 years) 

GAIA-X, OVHcloud, 
European digital 
innovation hubs 

 
15 



                                                                                                                                            

United 
Kingdom 

AI Opportunities 
Action Plan 

£2.5B (Microsoft, 3 
years); £8B (Amazon, 
5 years); £6.3B (US 
firms, data centers) 

AI infrastructure, 
investment 
attraction, public 
service 
integration, data 
unlocking, talent 

AI Growth Zones 
for data center 
construction 

Microsoft, Anthropic, 
CyrusOne, 
ServiceNow, Cloud 
HQ, CoreWeave, 
Amazon, Oracle, 
Salesforce, Cohere 

Canada Canadian Sovereign 
AI Compute Strategy; 
Pan-Canadian AI 
Strategy 

$2.4B (Budget 2024); 
$2B (compute & 
infrastructure); $1B 
(public 
supercomputing); 
$705M (AI SCIP); 
$300M (AI Compute 
Access Fund) 

Domestic 
compute 
capacity, IP 
safeguarding, 
talent, AI safety 

New AI 
supercomputing 
system 
(Canadian-owned 
& located); Secure 
computing facility 
for 
government/natio
nal security 

AI Institutes, Digital 
Research Alliance of 
Canada 

Japan "Most AI-friendly 
country"; Society 5.0 

$5.9B (private, 
2013-2024 sum); 
$3B/year 
(SoftBank/OpenAI 
licensing) 

AI innovation, 
economic 
growth, social 
challenges, 
cybersecurity 

Nvidia-led 
AI-computing 
infrastructure 
(with SoftBank, 
GMO Internet 
Group) 

SoftBank, OpenAI, 
METI 

South Korea National AI Strategy 
Policy Directions; AI 
G3 Status by 2030 

$1.3B (GPU purchases, 
2025); KRW 65T 
(~$47B) (private, 
2024-2027) 

GPU acquisition, 
domestic AI 
chips, LLM 
development, AI 
transformation, 
talent 

National AI 
Computing Center 
(15x current GPU 
size); 10,000 
high-performance 
GPUs 

World Best LLM 
Project, AI 
semiconductor 
commercialization 
initiatives 

India IndiaAI Mission; AI 
for India 2030 

₹10,300 crore (~$1.2B) 
(5 years); $11.1B 
(private, 2013-2024 
sum) 

Computing & 
semiconductor 
infrastructure, 
indigenous GPUs, 
data access, 
talent, startup 
support 

High-end 
common 
computing facility 
(18,693 GPUs); 
BharatGen 
(multimodal LLM); 
AI-Ready Data 
Initiative 

Sarvam AI, BCG, 
T-Hub MATH 

United Arab 
Emirates 

UAE Strategy for 
Artificial Intelligence 
(by 2031) 

$96B (AI contribution 
to economy by 2030); 
$3.7B (private, 
2013-2024 sum); 
$800M (Silver Lake in 
G42); $20B (DAMAC in 
US data centers) 

AI infrastructure, 
regulations, 
partnerships, 
AI-driven sectors 
(finance, 
healthcare, 
energy, defense) 

Expanding AI 
education 
(MBZUAI); Smart 
government 
initiatives 

G42, Silver Lake, 
DAMAC Properties 

Saudi Arabia Vision 2030; National 
Strategy for Data and 
AI (by 2030) 

$100B (Project 
Transcendence); 
$14.9B (AI investments 
at LEAP 2025); $1.7B 
(AI-related companies, 
2023 funding) 

AI capabilities, 
data-driven 
innovation, ICT 
infrastructure, 
workforce 
development 

World's largest AI 
inferencing data 
center (with 
Groq/Aramco 
Digital); National 
Data Bank 

Microsoft, Oracle, 
Huawei, Google, PIF, 
Groq, Aramco Digital 
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4. The Global Race for AI Infrastructure 
and Energy Sovereignty 
The rapid advancement of AI is inextricably linked to the underlying physical and 

energy infrastructure that supports it. This section examines the critical components 

of this foundation, including global data center capacity, the specialized hardware 

driving AI, and the escalating power demands that pose both challenges and 

opportunities. 

4.1 Global Data Center Capacity and Expansion 

Data centers serve as the physical backbone of the AI revolution, housing the vast 

computational resources required for training and deploying AI models. The global 

data center market capacity was estimated at approximately 59 gigawatts (GW) in 2023, 

with projections indicating a significant expansion to around 122 GW by the end of 

2030.29 The United States currently holds a dominant position in this landscape, 

hosting 51% of the world's over 1,000 hyperscale data centers.30 

 

Image 3: Distribution of data centers among countries 
The demand for AI-ready data center capacity is projected to rise by 33% between 2023 
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and 2030, reflecting the increasing adoption of AI workloads. By 2030, it is anticipated 

that approximately 70% of data centers will be equipped to handle advanced AI 

workloads.30 In response to this surging demand, countries are actively pursuing 

expansion of their domestic capacity. The European Union, for instance, aims to triple 

its data center capacity within the next five to seven years through initiatives like the 

Cloud and AI Development Act.13 Similarly, the UK is launching "AI Growth Zones" to 

encourage the construction of new data centers.15 Saudi Arabia is making substantial 

investments, including plans for the "world's largest AI inferencing data center".27 

4.2 Compute as a Strategic Asset 
Modern AI infrastructures are fundamentally reliant on specialized accelerators such 

as Graphics Processing Units (GPUs) or custom AI chips like Tensor Processing Units 

(TPUs) and Application-Specific Integrated Circuits (ASICs), rather than traditional 

Central Processing Units (CPUs). This preference stems from the GPUs' ability to 

perform many calculations in parallel, a necessity for efficiently training complex AI 

models.31 Despite this increasing demand, the underlying hardware is becoming more 

efficient. Hardware costs for AI computation have been declining at an estimated rate 

of 30% annually, while the energy efficiency of this hardware has been improving by 

approximately 40% each year.33 Nations are prioritizing both the acquisition and 

domestic development of these critical components to secure their AI sovereignty. 

South Korea, for example, plans to acquire 10,000 high-performance GPUs and support 

the commercialization of domestically produced AI chips.20 India has set an ambitious 

goal to develop its own indigenous GPU within three to five years, aiming to reduce 

reliance on imported technology.22 

 

 
AI's future hinges on advanced compute power—GPUs and custom chips are 

now the backbone of progress. As demand skyrockets, nations are racing to 

build and secure their own AI hardware to stay competitive and sovereign, 

 

 
18 



                                                                                                                                            

4.3 Power Capacity and Energy Consumption 
The burgeoning AI sector presents a significant challenge to global power grids due to 

its immense energy requirements. Electricity consumption from data centers was 

estimated at around 415 terawatt hours (TWh) in 2024, constituting approximately 

1.5% of global electricity consumption. This consumption has grown at a rate of 12% 

per year over the last five years.34 Projections indicate that global electricity 

consumption for data centers will double to approximately 945 TWh by 2030, growing 

at about 15% per year—more than four times faster than the growth of total electricity 

consumption from all other sectors.34 

 

Image 4: Global Data center energy consumption 
AI is a primary driver of this surge, projected to increase data center power demand by 

165% by 2030 compared to 2023 levels.29 AI workloads accounted for 14% of global data 

center power usage in 2023, a share projected to rise to 27% by 2027.29 In the U.S., data 

centers' power demand reached 46,000 megawatts (MW) in Q3 2024, largely driven by 

AI and cryptocurrency mining.35 Goldman Sachs Research projects that AI-driven data 

centers will consume an additional 200 TWh annually from 2023 to 2030, potentially 

accounting for 30% of all global data center power consumption by 2030.35 Concerns 

are mounting regarding the grid's ability to keep pace with this skyrocketing demand, 

necessitating significant utility investment.35 Some U.S. states are even exploring the 

use of coal-powered infrastructure for AI data centers to meet the escalating electricity 

needs.5 

The escalating power demands of AI data centers elevate energy supply and grid 

stability into critical geopolitical and strategic assets. This means that energy 

sovereignty is becoming increasingly intertwined with AI sovereignty. The massive 

 
19 



                                                                                                                                            

and rapidly growing energy consumption, with projections of doubling global 

consumption by 2030, highlights a fundamental challenge. The explicit questioning of 

whether the grid can keep up and the potential for power shortages underscore that 

energy availability is now directly influencing national AI strategy. Consequently, 

nations with abundant, reliable, and affordable energy sources gain a significant 

competitive advantage in the AI race, making energy security a direct component of 

their overall AI capabilities. 

The global scramble for GPUs and the push for indigenous chip development 

underscore the critical vulnerability inherent in AI supply chains. This situation 

highlights the strategic imperative for nations to control their access to advanced 

compute power. The emphasis on GPUs as essential for AI model training and the 

rapidly increasing computational demands of these models create intense pressure. 

The initiatives by South Korea and India to acquire or develop their own GPUs directly 

reflect this concern. Reliance on a few dominant manufacturers, such as Nvidia, creates 

a single point of failure or leverage in the global supply chain. Therefore, achieving 

"Infrastructure Autonomy," as defined in the core principles of Sovereign AI, becomes 

paramount for true national AI capabilities, pushing nations towards domestic 

production or highly diversified technology stacks. 

 
The global race for AI dominance hinges not just on data and talent, but on 

secure, sovereign access to compute power. As nations confront the risks of 

over-reliance on a few GPU manufacturers, "Infrastructure Autonomy" 

emerges as a strategic necessity, not a luxury. At the same time, the growing 

energy demands of AI are forcing a critical reckoning with sustainability. 

These twin pressures—technological dependence and environmental 

strain—are driving innovation in both domestic chip development and 

green AI infrastructure. 

​

The immense energy footprint of AI poses a significant environmental challenge, 

which could become a limiting factor for national AI ambitions. However, this 

challenge also serves as a potent driver for innovation in energy-efficient hardware 
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and sustainable data center operations. The increasing carbon emissions from AI 

training, with large models like Llama 3.1 405B (2024) emitting thousands of tons of 

carbon, and the projected rise in data center carbon emissions, indicate that unchecked 

growth is unsustainable. This environmental pressure, combined with the strain on 

power grids, will likely compel nations to invest heavily in "AI Energy Efficiency & 

Sustainability," transforming environmental concerns into a catalyst for advancements 

in green computing and potentially shaping future regulatory frameworks for AI 

infrastructure.​

​

Global Data Center Power Demand Projections (2023-2030) 

Year Total Global Data 

Center Power 

Consumption 

(TWh) 

Percentage of 

Global Electricity 

Consumption (%) 

AI's Share of Data 

Center Power 

Consumption (%) 

Projected Growth 

Rate (YoY/CAGR) 

Notable 

Country-Specific 

Consumption/Gro

wth 

2023 ~360 TWh (est.) ~1.3% (est.) 14% N/A N/A 

2024 415 TWh 1.5% N/A 12% (last 5 years) US: 540 

kWh/capita 

2027 84 GW (projected) N/A 27% N/A US: 46,000 MW 

(Q3 2024) 

2030 945 TWh ~3% 30% 15% (2024-2030) US: +130% (from 

2024), ~1200 

kWh/capita; China: 

+170% (from 

2024); Europe: 

+70% (from 2024) 

Note: TWh (Terawatt-hours) is a measure of energy consumed over time, while GW 

(Gigawatts) and MW (Megawatts) are measures of power capacity at a given moment. 

Conversions are approximate where necessary for consistency. 
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5. National Contributions to Models, 
Research, and Industry 
The AI software ecosystem, encompassing model development, research output, and 

the emergence of national AI companies, forms the intellectual and commercial core of 

AI sovereignty. This section analyzes the global landscape of these contributions. 

Model Contributions and Innovations by Countries 

The development of notable AI models has increasingly shifted towards the industry 

sector, which accounted for nearly 90% of such models in 2024, a significant increase 

from 60% in 2023.32 This trend indicates a pronounced movement of frontier AI 

development from academic institutions to private enterprises. The United States 

continues to lead as the primary source of notable AI models, producing 40 in 2024, 

substantially more than China's 15 and Europe's combined total of three.8 

Despite the U.S. lead in quantity, Chinese models have rapidly narrowed the quality gap. 

Performance differences on major benchmarks, such as MMLU (Massive Multitask 

Language Understanding) and HumanEval, shrank from double digits in 2023 to near 

parity in 2024.8 Key innovations in the AI model landscape include the rise of highly 

capable Small Language Models (SLMs) 33 and a dramatic reduction in AI inference 

costs. For instance, the cost of querying an AI model equivalent to GPT-3.5 (64.8% on 

MMLU) dropped over 280-fold from November 2022 to October 2024.32 

Examples of national model contributions include China's DeepSeek, which notably 

claims to have trained large language models (LLMs) using only a fraction of the 

computing power required by some top U.S.-made LLMs.11 

 
India's BharatGen stands out as the world's first government-funded 

multimodal LLM initiative, launched in 2024 to enhance public service 

delivery.22 In the open-source domain, Meta's Llama series and Mistral AI's 

models are recognized as key players.33 

​
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AI Research Output and Influence 

In terms of raw scientific output, China leads the global landscape in AI scientific 

publications, holding a 36.05% share in 2023 and demonstrating significant 

year-on-year growth.38 India and the United States follow, with shares of 12.13% and 

11.98% respectively in 2023.38 While China produces the highest volume of AI research 

publications, the United States maintains a lead in highly influential research, 

specifically among the top 100 most cited publications.32 

 

Image 5: Notable AI models by region 
Overall AI publication activity continues to grow robustly, nearly tripling between 2013 

and 2023, and increasingly dominates computer science publications.32 Academia 

remains the single leading institutional producer of highly cited research.32 National AI 

research centers and university programs are recognized as crucial components of a 

sovereign AI ecosystem, fostering the intellectual capital necessary for long-term AI 

leadership.2 

National AI Company Landscapes 

The United States continues to lead significantly in private AI investment, attracting 

$109.1 billion in 2024.8 Major U.S. AI companies include Nvidia, dominant in AI 

Hardware and GPUs; Google (Alphabet), a leader in AI Platforms and search integration; 

Amazon, with strong presence in AI in healthcare and cloud services; and Microsoft, 
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also active in AI in healthcare and cloud computing.9 

China's AI industry, while receiving substantial private investment, is heavily 

state-backed, with a new $8.2 billion fund focusing on the entire AI supply chain.12 In 

Europe, Germany demonstrates high profitability among its AI companies, with 31% 

reporting profitability, and a strong focus on robotics and automation, aligning with its 

manufacturing base. Aleph Alpha is a notable German company specifically developing 

"Sovereign AI, Foundation Models".9 France boasts the fastest-growing AI sector in 

Europe, with French AI startups having attracted €11.2 billion in funding.9 India's 

Generative AI ecosystem has experienced remarkable growth, with 80% of Indian 

companies considering AI a core strategic priority.22 Infosys and Persistent Systems are 

key players in India's AI landscape, investing heavily to enhance service offerings and 

operational efficiencies.9 Globally, private investment in Generative AI showed strong 

momentum, attracting $33.9 billion in 2024, an 18.7% increase from 2023.33 

 
The U.S. maintains a dominant lead in private AI investment, attracting 

$109.1 billion in 2024, far outpacing other nations. This private-sector driven 

model appears highly effective in commercializing AI research into 

market-leading products. 

​

The differing patterns in AI research output, where China leads in publication volume 

while the U.S. excels in highly influential research and notable model development, 

suggest distinct pathways to innovation and leadership, each with implications for 

long-term AI supremacy. The raw number of publications does not necessarily equate 

to breakthrough innovation or market-leading products. The U.S. model, largely driven 

by massive private investment, appears to be more effective at translating research into 

impactful, commercialized models. China's volume, conversely, might be part of a 

broader, state-backed effort to build a comprehensive knowledge base across the AI 

spectrum. Understanding this dynamic is crucial for discerning where true 

"sovereignty" in AI innovation resides.​

 

​
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The increasing prevalence of open-source AI models, with 65.7% of new models in 

2024 being open-source, presents an interesting challenge for the concept of sovereign 

AI. While open-source development democratizes access to AI technologies and fosters 

widespread innovation, it simultaneously implies less proprietary control for individual 

nations over foundational models. This development suggests a shift in the focus of 

sovereignty from outright "ownership" of every component to a greater emphasis on 

"governance and customization." If foundational models are freely available, nations 

may not need to develop every model from scratch. Instead, their strategic focus could 

pivot towards fine-tuning these models, developing specific applications, and ensuring 

their ethical alignment within national legal frameworks. This approach could 

potentially reduce the "cost of sovereignty" in model development but elevates the 

importance of robust regulatory control and the cultivation of talent capable of 

leveraging and adapting open-source solutions to national needs. 

 

Image 6: Key trends of open-source models 

Nations are actively fostering their own AI companies and ecosystems, aiming to 

cultivate domestic AI champions. This strategy is driven by a desire to ensure local 

control, maximize economic benefits, and align AI development with national values, 

even when it means competing with established global tech giants. The explicit focus 

of Germany's Aleph Alpha on "Sovereign AI, Foundation Models," India's 

government-funded "BharatGen" initiative, and China's emphasis on indigenous 

models like DeepSeek all point to a deliberate strategy to nurture national leaders in 

the AI space. This approach is motivated by the need to retain full control over sensitive 

data, comply with national regulations on data residency, and build local economic 

ecosystems around AI innovation, rather than relying solely on foreign providers. This 

highlights a strategic tension between the benefits of globalized AI development and 
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national aspirations for self-determination and technological independence. 

AI Research Publication Share by Country (2023) 

Rank Country Share of Global AI 

Scientific 

Publications (%) 

Year-on-Year Growth 

(%) 

5-Year CAGR (%) 

1 China 36.05 +16.88 +7.92 

2 India 12.13 +9.17 +9.26 

3 United States 11.98 +6.23 +3.89 

4 Japan 3.39 -0.74 +5.83 

5 Germany 3.21 +6.28 +3.60 

6 United Kingdom 2.82 +1.37 +2.47 

7 Indonesia 2.27 +21.07 +27.24 

8 Italy 2.23 +7.03 +3.35 

9 Australia 1.69 +7.34 +3.04 

10 Canada 1.66 +5.21 +2.67 

 

 
The growing dominance of open-source AI models, accounting for 65.7% of new 

models in 2024, is redefining AI sovereignty from outright ownership to 

governance and customization. This shift allows nations to focus on 

fine-tuning open-source models, developing specific applications, and ensuring 

ethical alignment within national frameworks, effectively reducing the "cost of 

sovereignty" in model development while elevating the importance of robust 

regulatory control and talent cultivation. 
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6. Weaponization of AI and Geopolitical 
Leverage 

The dual-use nature of AI, with its potential for both transformative civilian 

applications and profound military implications, presents a significant challenge in the 

geopolitical landscape. This section explores how AI is being weaponized, from export 

controls on critical hardware to its integration into national security strategies and 

surveillance technologies. 

6.1 GPU Export Bans and Their Impact 
The U.S. government has progressively tightened controls on the export of advanced 

semiconductor technology, devices, and tools to China, primarily to maintain U.S. 

leadership in this critical sector and address national security concerns.39 These 

restrictions have targeted Nvidia's most advanced chips, including the H100, H200, and 

Blackwell series. As of April 2025, these controls were extended to even the less 

advanced H20 chip, explicitly citing the risk that such chips could be used in Chinese 

supercomputers for military purposes.40 Nvidia anticipates incurring charges of up to 

$5.5 billion in its fiscal Q1 due to these export restrictions on its H20 chip for China.40 

The portion of Nvidia's total revenues from China sales has already seen a significant 

decline, from 26% in 2022 (before restrictions) to an estimated 13% in fiscal 2025.40 

The consequences for targeted nations, particularly China, have been complex and, in 

some respects, counterintuitive. U.S. export controls have paradoxically accelerated 

China's efforts to achieve self-sufficiency in semiconductor design and production.39 

Operating under constrained computing environments, Chinese AI engineers are 

innovating in ways that prioritize efficient use of computing power. This is exemplified 

by DeepSeek's claim of training large language models (LLMs) with only a fraction of 

the computing power needed by U.S. models.37 Despite the controls, circumvention 

efforts persist, with reports of a robust black market for restricted chips and companies 

finding ways to access computing resources located elsewhere.37 There have been 

documented instances of large-scale smuggling of banned Nvidia GPUs into regions 

like Malaysia for re-export to China.39 Furthermore, China has made notable strides in 

indigenous chip development, with Huawei producing its Ascend 910B chip and 
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Alibaba Group unveiling the C930 central processing unit based on the RISC-V 

architecture to counter U.S. restrictions.39 Chinese scientists have also reported 

breakthroughs in developing carbon nanotube-based chips capable of running AI 

tasks.39 

The impact on global supply chains and U.S. competitiveness is also significant. U.S. 

and allied semiconductor makers have experienced substantial revenue losses due to 

curtailed sales in China, which directly affects their ability to fund the high levels of 

R&D characteristic of the industry.39 These export controls risk isolating U.S. firms 

from the global market and inadvertently creating opportunities for Chinese 

competitors to fill the void.41 This "counterproductive" approach could hasten China's 

progress in AI chips by incentivizing domestic innovation and pushing international 

customers towards Chinese suppliers who can no longer rely on American technology.41 

The U.S. export controls, intended to impede China's AI progress, are inadvertently 

accelerating China's domestic innovation and self-sufficiency in critical AI hardware 

and software. This dynamic potentially undermines U.S. long-term leadership and 

global market share. The explicit statements that "scarcity fosters innovation" and that 

"blocking access weakens U.S. competitiveness and accelerates China's efforts to build 

a self-sufficient chip industry" highlight a complex causal relationship. A policy 

designed for denial is, in effect, strengthening the adversary's indigenous capabilities, 

making true "sovereignty" through external control difficult to achieve and potentially 

counterproductive. The direct economic cost to U.S. firms, exemplified by Nvidia's 

substantial charges, further illustrates this boomerang effect. 

6.2 AI as a Potential Leverage in National Security 
AI has rapidly transformed into a "strategic asset" and a "battlefield for nations 

competing for economic and security leadership".3 The pursuit of AI supremacy is 

accelerating geopolitical rivalries and fundamentally redefining the global balance of 

power.4 Its incorporation into national security, economic policies, and social 

governance means no major power can afford to overlook or deny its significance.4 

Military Applications of AI by Various Countries: 

●​ United States: The Department of Defense is significantly scaling up AI 
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integration into its military operations. The potential value of all AI-related federal 

contracts increased by almost 1200% from 2022 to 2023, with the Pentagon 

accounting for the vast majority of this spending.42 Initiatives include Project 

Thunderforge, which integrates AI agents into military planning, decision-making 

workflows, wargaming simulations, and strategic assessments.42 The U.S. also 

operates autonomous warships like the Sea Hunter, capable of extended operations 

without human interaction, and utilizes AI for intelligence, surveillance, and 

reconnaissance through programs like Project Maven, which identifies objects and 

people from drone footage.43​

 

●​ China: China's military strategy, known as "intelligentized AI warfare," integrates 

AI across all aspects of modern war. This approach views AI weapons as 

enhancements to existing military systems rather than merely introducing 

independent weapons. This includes AI-powered psychological operations, 

behavioral analysis of enemies, social media manipulation, automated signals 

intelligence operations, and the development of real-time reactionary tactics.43​

 

●​ Israel: AI capabilities are deeply integrated into Israeli military operations, with 

major tech companies like Palantir, Google, Amazon, and Microsoft providing AI 

services. Systems such as "Gospel" and "Lavender" are used for target 

identification, sifting through intelligence, and pinpointing targets for drone 

strikes. Israel also deploys AI in ground and robotic vehicles, which have been 

involved in numerous engagements.42​

 

●​ India: India established its Defense Artificial Intelligence Council and Defense AI 

Project Agency in 2022. It has been utilizing AI in its intelligence, reconnaissance, 

and surveillance systems since 2021 and invests millions in AI-powered UAVs, 

drone swarms for offensive engagements, autonomous combat vehicles, and 

robotic surveillance platforms for high-altitude outposts.43​

 

●​ Russia/Ukraine: The ongoing conflict has seen significant deployment of 

AI-powered technology and weapons by both sides, with some observers referring 

to it as a "drone war." AI-powered navigation and drone swarms have notably 
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improved military operations, and Ukraine is using AI to intercept Russian 

communications and extract critical information.43​

 

●​ South Korea: South Korea has developed advanced AI-powered weaponry, 

including hand-held weapons and the "Super aEgis II" machine gun, which can 

autonomously identify, track, and engage targets up to four kilometers away, even 

at night. The nation is also working towards AI technology capable of 

independently determining whether a human is an enemy or a friend.43 

The extensive evidence of AI's military applications across leading global powers, 

ranging from autonomous weapons to intelligence gathering and strategic planning, 

demonstrates that AI is not merely enhancing existing military capabilities but 

fundamentally reshaping the nature of warfare and strategic advantage. Consequently, 

national control over AI development and deployment has become an existential 

security concern. The image below shows the AI adoption readiness and challenges of 

developing and developed countries.  

 

Image 7: AI adoption readiness and challenges of developing and developed countries 
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7. Sovereign AI as National Strategy 
The preceding analysis unequivocally establishes the profound relevance of Sovereign 

AI as a multifaceted imperative for nations in the 21st century. Its significance is rooted 

in the critical need for autonomy, resilience, economic competitiveness, and ethical 

alignment in an increasingly complex and technologically driven global landscape. 

Autonomy and Control 

Sovereign AI is fundamentally about a nation's independent ability to develop, deploy, 

and govern AI systems without undue reliance on foreign entities.1 This independence 

is paramount for protecting national data, intellectual property, and strategic interests.2 

For example, data sovereignty ensures that sensitive national data, such as patient 

information used for diagnostic models, remains within the country's legal 

jurisdiction, preventing its exposure to foreign control or exploitation.2 Similarly, 

national ownership or full transparency of AI models allows nations to validate, 

customize, and audit these systems to align with local regulations and cultural values, 

thereby preventing foreign influence on critical algorithmic decision-making 

processes that could impact public services or national security.2 In an era of increasing 

geopolitical competition, autonomy over AI capabilities is essential to prevent 

technological dependency, safeguard national security from potential backdoors or 

foreign leverage, and ensure that AI development serves national rather than external 

interests. 

 
Sovereign AI is a critical imperative for nations, ensuring autonomy, resilience, 

economic competitiveness, and ethical alignment in a technologically driven 

world. It enables countries to develop, deploy, and govern AI systems 

independently, safeguarding national data and strategic interests. This approach 

fosters in-house capabilities, reduces vulnerability to supply chain disruptions, 

and drives domestic innovation and economic growth.  
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Resilience and Continuity 

Cultivating in-house AI capabilities and diversified technology stacks is a direct 

strategy to reduce exposure to supply chain disruptions, export controls, and 

geopolitical tensions.2 The impact of U.S. GPU export bans on China, leading to billions 

in charges for affected companies and accelerating China's indigenous chip 

development, serves as a stark reminder of the fragility of global supply chains and the 

imperative for self-reliance.37 Nations like China and India are actively pursuing 

comprehensive investments in their AI supply chains and indigenous chip 

development to build resilience against such external pressures.12 Geopolitical volatility 

and the weaponization of technology necessitate that nations build robust, resilient AI 

ecosystems capable of withstanding external shocks and ensuring the continuity of 

critical AI-driven services and defense capabilities. 

Economic Competitiveness and Innovation 

Sovereign AI plays a crucial role in fostering domestic AI ecosystems, nurturing talent 

pipelines, and cultivating national AI champions. This, in turn, drives economic 

growth and helps nations maintain leverage in global technology markets.2 Significant 

investments in national AI computing centers, data platforms, and startup 

ecosystems—such as Canada's AI Compute Strategy, India's IndiaAI Mission, and Saudi 

Arabia's Project Transcendence—are explicitly designed to stimulate local innovation 

and create new high-value industries.18 AI is projected to contribute trillions to the 

global economy, with estimates ranging from $7 trillion for China by 2030 to $500 

billion for India by 2025, and a potential $15 trillion globally by 2030.12 Nations that 

control their AI destiny are better positioned to capture this immense economic value, 

create high-quality jobs, and ensure that the benefits of AI accrue domestically, thereby 

avoiding a future where economic prosperity is dictated by foreign technological 

monopolies.47 

Ethical Alignment and Regulatory Control 

A core principle of Sovereign AI is the development of AI systems that are aligned with 

national values, legal frameworks, and ethical norms.2 This involves establishing 

robust regulatory bodies and frameworks to ensure responsible innovation, 

transparency, and fairness in AI deployment.15 Examples include the European Union's 
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comprehensive AI Act 2 and Canada's new AI Safety Institute 17, both of which aim to 

address critical risks such as lack of accountability, algorithmic bias, and cybersecurity 

vulnerabilities.5 As AI becomes increasingly pervasive in decision-making processes, 

from public services to defense, ensuring that these systems reflect societal values and 

protect citizen rights is paramount. Sovereign AI empowers nations to shape AI 

governance according to their unique ethical and legal landscapes, preventing the 

imposition of foreign norms or the erosion of democratic principles through 

unchecked AI deployment, particularly concerning surveillance technologies.44 

The development of AI presents a paradox for globalization. While AI thrives on global 

collaboration, open-source contributions, and cross-border data flows, the strategic 

imperative of "Sovereign AI" is simultaneously driving a counter-trend towards 

national self-sufficiency and control. This creates an inherent tension between 

globalized innovation and nationalistic technological protectionism. The report 

highlights both extensive global collaboration, such as the SoftBank/OpenAI joint 

venture in Japan, and the dominance of U.S. private investment, alongside strong 

nationalistic drives like China's push for self-sufficiency and the EU's large-scale 

infrastructure build-out aimed at reducing foreign dependence. This fundamental 

tension will likely continue to shape the future of global AI governance, trade policies, 

and technological development. 

The concept of Sovereign AI is not merely an aspirational goal but a direct, strategic 

response to the weaponization of AI and its underlying technologies as tools of 

geopolitical leverage. The detailed accounts of GPU export bans by the U.S. 

government, intended to impede China's AI progress, clearly illustrate how AI and its 

components are being used as instruments of power and control. Sovereign AI, with its 

emphasis on "Resilience and Continuity" and "Infrastructure Autonomy," directly 

addresses these vulnerabilities. It represents a proactive measure by nations to ensure 

their stability and maintain their power in a world where technological dependency 

can be exploited for strategic advantage. 

Furthermore, nations are increasingly recognizing that a failure to achieve AI 

sovereignty could lead to significant economic losses and societal disadvantages, 

creating a sense of urgency akin to Japan's "2025 digital cliff." This term, used to 

describe projected scenarios where society-wide failures to adopt digital systems could 
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incur massive economic losses, can be generalized to the broader AI landscape. If a 

nation lacks control over its AI infrastructure, data, and models, it risks being left 

behind in the global economic transformation, becoming perpetually reliant on 

foreign powers for critical services, and potentially compromising its national security. 

This adds a critical, time-sensitive dimension to the pursuit of Sovereign AI, 

underscoring the imperative for rapid and decisive action. 

Global Private AI Investment by Country (2013-2024/2025 Sum) 

Rank Country Total Private Investment (in 

USD, Billions) 

Notable % Change (YoY or 

since 2023) 

1 United States 470.9 N/A (2024: $109.1B) 

2 China 119.3 -1.9% (since 2023) 

3 United Kingdom 28.2 N/A (2024: $4.5B) 

4 Canada 15.3 N/A 

5 Israel 15.0 N/A 

6 Germany 11.3 N/A 

7 India 11.1 N/A (2024: $1.16B) 

8 France 9.0 N/A 

9 South Korea 7.3 N/A 

10 Singapore 7.3 N/A 

 

 
The United States dominates global private AI investment, attracting a 

staggering $470.9 billion between 2013 and 2024. 
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8. Challenges to Generative AI Adoption 
at Scale in Developing Countries 
Generative Artificial Intelligence (GenAI) presents an unparalleled opportunity for 

developing countries to accelerate economic growth and address persistent societal 

challenges across vital sectors such as healthcare, agriculture, and education. However, 

the realization of this transformative potential is significantly impeded by a complex 

and interconnected array of foundational barriers. These critical challenges span 

inadequate digital and energy infrastructure, a substantial disparity in AI investment 

coupled with high development costs, a severe talent and digital literacy gap 

exacerbated by brain drain, nascent and inconsistent regulatory frameworks, and 

significant issues related to the localization and cultural relevance of AI models. 

These challenges are not isolated; they form a compounding vulnerability that risks 

widening global inequalities and entrenching technological dependency. Overcoming 

these impediments necessitates a holistic, multi-stakeholder approach. This includes 

strategic domestic investments in foundational infrastructure and human capital, 

targeted international cooperation to bridge resource gaps and foster knowledge 

transfer, and the development of adaptive, context-specific policy frameworks to 

ensure inclusive and sovereign AI development. Without concerted and coordinated 

efforts, the promise of GenAI for developing nations may remain largely unfulfilled, 

further entrenching existing global disparities. 

The aspiration for developing countries to embrace Generative AI at scale confronts a 

formidable barrier in their existing infrastructure. This challenge manifests across 

digital connectivity, computing power, and reliable energy supply, creating a 

foundational bottleneck that impedes widespread AI adoption. 

8.1 Digital Divide and Connectivity Gaps 
The fundamental "digital divide" between developed and developing countries 

represents a primary impediment, exacerbating inequalities in access to AI 

technologies, the necessary underlying infrastructure, and essential digital literacy 

skills. This disparity significantly limits the equitable distribution of AI's potential 
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benefits across populations.1 Global internet access remains far from universal. In 

2024, a staggering 2.6 billion people—one-third of the global population—were still 

offline, indicating that universal connectivity is a distant prospect.8 

The disparity in internet penetration is particularly stark: only 27% of the population 

in low-income countries uses the internet, compared to 93% in high-income countries. 

While low-income economies exhibit the highest annual growth rate in internet use 

(8.5% in 2024), this pace is insufficient to close the existing connectivity gap in the 

foreseeable future.8 Regionally, Africa records the lowest average internet penetration 

at merely 38%.8 Within Latin America and the Caribbean (LAC), internet access is 

highly uneven, with significant variations across countries and regions, leading to 

disparities in access to data storage, cloud computing, and AI capabilities.12 

The impact of this digital chasm extends profoundly to education. A concerning 

two-thirds of the world's school-age children (1.3 billion aged 3-17) lack internet 

connection in their homes. This figure rises dramatically to 95% in West and Central 

Africa, 88% in East and Southern Africa and South Asia, and 75% in the Middle East 

and North Africa.9 This profound "digital canyon" directly impedes children's ability to 

connect online, compete in the modern economy, and access education, particularly 

critical during periods of school closures.9 Furthermore, a lack of reliable internet 

connectivity in remote areas and a shortage of digital devices in schools significantly 

hinder students' engagement with modern educational tools and resources.13 This 

current deficit in digital access for children is not merely a contemporary 

inconvenience; it fundamentally limits their ability to develop foundational digital 

literacy skills. As these children mature, they will enter a workforce increasingly 

shaped by AI, yet without the basic competencies required.  

 
The persistent "digital divide" profoundly exacerbates global inequalities, 

leaving 2.6 billion people offline in 2024. This disparity in internet access, 

especially stark in low-income countries and regions like Africa, critically 

impedes equitable access to AI technologies and essential digital literacy. 
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8.2 Limited Computing Power and Data Center 
Capacity 
The effective implementation and scaling of advanced AI technologies, particularly 

GenAI, are critically dependent on robust infrastructure, including high-speed internet, 

reliable electricity, and access to modern computational devices.10 Developing nations 

frequently possess limited technological infrastructure, which significantly impedes 

their capacity to deploy and scale GenAI solutions effectively.1 AI infrastructures are 

heavily reliant on specialized hardware such as Graphics Processing Units (GPUs) or 

similar accelerators, which are indispensable for the parallel processing required to 

train complex AI models.14 

The global landscape of AI development and deployment is characterized by a high 

concentration of resources. Wealthy nations and a few large tech corporations largely 

control the development and deployment of AI technologies, leading to significant 

resource concentration.10 This concentration means low-income nations often lack the 

necessary financial and technological resources to either compete in AI innovation or 

fully benefit from its advancements.10 The prohibitive costs associated with the 

infrastructure and computational power required for training and deploying AI models 

make them largely inaccessible for smaller businesses in developing countries, forcing 

them into reliance on external, often costly, solutions provided by dominant tech 

giants.10 

Global investment trends underscore this challenge: global spending on AI data centers 

alone is projected to exceed $1.4 trillion by 2027.14 Hyperscale data centers, which are 

synonymous with AI data centers due to their immense data processing capabilities, 

are overwhelmingly concentrated in developed nations, with the U.S. alone housing 

51% of the world's over 1,000 hyperscale centers.15 In Latin America and the Caribbean 

(LAC), the region accounts for a mere 4.8% of global data center infrastructure, a 

modest share compared to the U.S. (38.5%) and G7 countries collectively (17.7%).12 

Within LAC, Brazil hosts 37.2% of the region's data centers and its only two 

hyperscalers, highlighting internal regional disparities.12 Similarly, the Asia-Pacific 

region, despite its large population and digital fluency, is home to only 26% of the 

world's existing hyperscale data capacity.16 
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A critical consequence of this limited domestic computational capacity is that 

countries with insufficient infrastructure must rely on data storage and processing 

facilities located in other nations, thereby subjecting their data to the privacy 

regulations and legal frameworks of those foreign jurisdictions.12 This directly 

undermines the principle of "Sovereign AI," which emphasizes independent 

development, deployment, and governance of AI systems aligned with national 

interests and legal frameworks, including infrastructure autonomy and data 

governance.17 This dependency is not merely a technical or economic issue; it carries 

significant geopolitical implications. It limits a nation's economic competitiveness, 

stifles local innovation, and creates a vulnerability to external political and economic 

pressures. This reliance effectively constitutes a form of "digital colonialism" 18, where 

developing countries cede control over a critical future technology, hindering their 

ability to align AI development with their unique cultural values and strategic interests. 

8.3 Unreliable Energy Supply and Environmental 
Concerns 
Generative AI models are characterized by their increasing size, computational 

demands, and energy intensity.19 The training compute for notable AI models is 

doubling approximately every five months, indicating an exponential growth in energy 

requirements.19 The environmental footprint is significant: carbon emissions from AI 

training are steadily increasing, with models like GPT-4 (2023) emitting 5,184 tons and 

Llama 3.1 (2024) emitting 8,930 tons of carbon, a substantial amount compared to the 

average American's annual emissions.19 

Projections indicate that AI-driven data centers will consume an additional 200 

terawatt-hours of electricity annually from 2023 to 2030, potentially accounting for 

30% of all global data center power consumption by 2030.20 Overall, global electricity 

consumption for data centers is projected to more than double to approximately 945 

TWh by 2030.21 The energy demands of AI data centers are immense; a typical 

AI-focused data center consumes as much electricity as 100,000 households, with the 

largest ones under construction consuming 20 times that amount.21 These data centers 

require substantial amounts of both electricity and water, placing considerable pressure 

on national grids and local water resources.12 Even a relatively small data center can 

consume up to 25.5 million liters of water annually solely for cooling purposes.12 In 
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many rural or underdeveloped areas of developing countries, frequent power shortages 

and unreliable electricity grids directly prevent the effective and consistent use of 

AI-powered tools.10 

 

Image 8: AI’s energy and environmental impact, year by year 

This situation creates a critical energy-AI paradox for developing countries. While AI is 

presented as a powerful tool to help achieve sustainable development goals (e.g., 

improving agriculture, healthcare, and urban planning) 3, its foundational requirement 

for massive energy and water resources directly strains these same critical resources 

and contributes to environmental concerns like increased carbon emissions.19 Many 

developing countries already struggle with unreliable energy supply, energy poverty, 

and water scarcity.10 This means that without massive, rapid investment in renewable 

energy infrastructure and highly energy-efficient data center technologies, scaling AI 

will either exacerbate their existing energy and water crises or force them to rely on 

carbon-intensive energy sources, thereby hindering their climate commitments. This 

makes "green computing" not just an environmental ideal but an economic necessity 

for viable AI adoption.14 The broader implication is that foreign investments in AI 
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infrastructure in developing countries must be inextricably linked to sustainable 

energy solutions. Otherwise, such investments could create long-term environmental 

liabilities and perpetuate a cycle of resource depletion, ultimately undermining the 

very notion of sustainable development. 

 

Internet Penetration Rates and Data Center Capacity in Developing Regions  

Metric Value (2024) 

Global Internet Users 5.5 billion (68% of population) 

Global Offline Population 2.6 billion (32% of population) 

Internet Penetration in High-Income Countries 93% 

Internet Penetration in Low-Income Countries 27% 

Internet Penetration in Africa 38% 

School-age children unconnected at home (Global) 1.3 billion (67%) 

School-age children unconnected at home (West & Central Africa) 95% (194 million) 

School-age children unconnected at home (East & Southern Africa) 88% (191 million) 

School-age children unconnected at home (South Asia) 88% (449 million) 

School-age children unconnected at home (Middle East & North Africa) 75% (89 million) 

LAC's share of global data center infrastructure 4.8% 

Brazil's share of LAC data centers 37.2% 

Asia-Pacific's share of global hyperscale data capacity 26% 

​

This table provides a quantitative overview of the foundational digital infrastructure 

challenges facing developing regions. (Data sources: 8, 9, 12, 16) The stark contrast in 
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internet penetration rates between high-income and low-income countries, along with 

the significant number of school-age children lacking home internet access, vividly 

illustrates the profound "digital canyon." This lack of basic connectivity profoundly 

affects access to AI education and digital literacy development, creating an 

intergenerational barrier to AI adoption. Furthermore, the low share of global data 

center capacity in regions like LAC and Asia-Pacific underscores the severe limitations 

in local computing power, reinforcing technological dependency and raising concerns 

about data sovereignty. This data is crucial for understanding why other aspects of AI 

adoption, such as talent development and investment attraction, are so profoundly 

affected in these regions. 

8.4 Investment Barriers: The Capital Chasm 
The ambitious pursuit of Generative AI adoption in developing countries is severely 

constrained by significant investment barriers, creating a substantial "capital chasm" 

that separates them from leading AI nations. 

Insufficient Public and Private Funding 

A significant challenge for developing countries is the stark disparity in AI investment. 

The United States maintains a commanding lead, with private AI investment reaching 

$109.1 billion in 2024. This figure is nearly 12 times higher than China's ($9.3 billion) 

and 24 times that of the UK ($4.5 billion).24 While some emerging economies show 

growth, the overall scale remains limited. India, for example, attracted $1.16 billion in 

private AI investments in 2024, with a cumulative total of $11.29 billion from 2013 to 

2024.27 Other notable developing countries like the UAE ($3.7 billion) and Israel ($15 

billion) have also drawn significant AI investments over the past decade, yet these 

amounts are still dwarfed by the investments in leading developed nations.27 

Globally, venture capital (VC) funding for AI companies surged in 2024, exceeding $100 

billion—an 80% increase from $55.6 billion in 2023—with AI attracting nearly 33% of 

all global venture funding.28 However, this investment remains heavily concentrated in 

high-income countries, leaving low-income nations largely excluded.10 For emerging 

markets and low-income countries, foundational investments in digital infrastructure, 

education, and data access are deemed essential. Public investment plays a particularly 
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critical role in areas with high social returns, such as healthcare, education, and public 

administration, where private markets are less likely to invest sufficiently.29 In Africa, 

tech VC funding in 2024 saw a slight 2% decrease in total equity funding compared to 

2023, reaching US$2.2 billion. While this indicates a stabilization after a steep drop in 

2023, it was largely influenced by a resurgence of a few large "megadeals" in the second 

half of 2024, masking underlying challenges in broader funding activity.30 

This situation highlights an "investment paradox" for developing countries. While 

these nations are recognized for their immense potential for AI to drive economic 

growth and solve critical societal problems 3, the data clearly shows a massive disparity 

in private AI investment, with the overwhelming majority concentrated in the US and 

China. This means that despite the significant potential for high social and economic 

returns in developing economies—such as addressing unmet needs or tapping into less 

saturated markets—direct private capital inflow for AI is comparatively low. This 

suggests that private investors may perceive higher risks, lower immediate commercial 

returns, or insufficient foundational elements like robust infrastructure and skilled 

talent in these markets. The necessity of public investment in "high social return 

areas" 29 further indicates a market failure where private capital is hesitant to enter, 

necessitating government or international body intervention. This funding gap 

severely limits the ability of developing countries to build necessary AI infrastructure, 

foster local innovation, and scale AI solutions, perpetuating their reliance on foreign AI 

technologies and hindering their path to economic competitiveness and digital 

self-determination. 

 
This surge in demand highlights a stark disparity in AI investment, with the 

United States attracting $109.1 billion in private AI investment in 2024, 

significantly overshadowing developing countries like India ($1.16 billion). 

Despite a global surge in venture capital funding for AI, it remains heavily 

concentrated in high-income nations, leaving low-income countries struggling 

to make foundational investments in digital infrastructure and education. This 

uneven funding landscape, coupled with the environmental burden, poses a 

significant hurdle for equitable AI development and access globally. 
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8.5 High Costs of GenAI Development and 

Deployment 
The costs associated with training cutting-edge AI models are astronomically high, 

with estimates ranging from $78 million for OpenAI's GPT-4 to $191 million for 

Google's Gemini Ultra.11 These prohibitive figures effectively exclude most developing 

countries, and even many developed ones, from participating in frontier AI research 

and development, contributing to an "AI oligarchy" dominated by a few global players.11 

Beyond initial training, the operational costs of GenAI can be unpredictable and 

drastically increase with usage. This is largely due to the linear cost scaling employed 

by most GenAI providers, meaning the cost per unit (e.g., per token) remains constant 

as usage volume climbs.31 This linear scaling makes it challenging for infrastructure 

providers to offer volume-based pricing, leading to unpredictable expenses for 

businesses integrating GenAI.31 Software companies integrating GenAI face a difficult 

choice: either pass these new, potentially volatile AI costs onto their customers or 

absorb them, with the latter often being unfeasible given rising usage.31 While the cost 

of querying (inference) certain AI models has seen dramatic reductions (e.g., a 280-fold 

reduction for GPT-3.5 equivalent from $20 to $0.07 per million tokens by October 2024 

for Gemini-1.5-Flash-8B) 19, this affordability primarily applies to using existing models, 

not to their initial development or large-scale customization. 

 

Image 9: AI’s training cost comparison of different models 

This situation presents a crucial distinction between "cost-efficiency" at inference and 

"cost-prohibitive" at training. While the application of existing AI models (inference) is 

becoming more accessible, the ability to develop, customize, and innovate foundational 
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GenAI models (training) remains prohibitively expensive. For developing countries, 

this means that while they might be able to afford to use pre-trained models developed 

elsewhere, their capacity to build their own sovereign, locally relevant, and culturally 

nuanced GenAI models is severely restricted. This reinforces technological dependency 

and limits their ability to address unique local challenges with bespoke AI solutions. 

Furthermore, even for inference, the unpredictable and linear scaling of usage costs 31 

poses a significant financial risk for businesses in developing countries with tighter 

budgets and less financial flexibility. This cost dynamic ensures that the "AI oligarchy" 
11 of a few wealthy nations and large corporations will continue to dominate frontier AI 

innovation, hindering true digital self-determination for developing countries and 

impacting their long-term economic competitiveness and strategic autonomy. 

8.6 Reliance on External Capital and Market 

Dynamics 
While attracting foreign investment in AI is crucial for driving growth in developing 

countries, it frequently creates a tension with the imperative to protect local industries 

and national interests.18 The engagement of Western AI companies in the Global South 

has been characterized by some as ushering in a new era of "digital colonialism," 

marked by practices that are perceived as exploitative and undermining local agency 

and control.18 Concerns exist regarding economic "rent-seeking" by AI-dominant 

countries, where they might extract disproportionate value from developing nations. 

Furthermore, there are fears of the deliberate exclusion of AI innovations from 

low-income countries from major Western and Chinese markets, limiting their global 

participation.5 

This reliance on external capital for AI development is not merely an economic issue 

but one with significant geopolitical dimensions. The research introduces concepts like 

"digital colonialism" 18 and "global asymmetries in power" 18, where dominant firms 

(often US-based) control critical aspects such as data sovereignty and intellectual 

property. This frames foreign investment not just as an economic transaction but as a 

strategic tool in a competitive geopolitical landscape where AI is increasingly viewed as 

a "battlefield" for global economic and security leadership.33 This can lead to conflicts 

with a developing country's need to protect local industries, ensure data sovereignty, 

 
44 



                                                                                                                                            

and align AI development with its own strategic interests. The risk of "economic 

rent-seeking" and market exclusion 5 further highlights how foreign investment, if not 

carefully managed, can perpetuate rather than alleviate dependency. Consequently, 

developing countries must navigate a complex geopolitical minefield to secure 

necessary AI investment without compromising their national interests, fostering 

long-term technological dependency, or ceding control over their digital future.​

 

Global Private AI Investment by Country (2013-2024 Cumulative & 2024 Annual) 

Rank Country Total Investment 

(2013-2024 Cumulative, in 

USD Billions) 

Private AI Investment (2024 

Annual, in USD Billions) 

1 United States 470.9 109.1 

2 China 119.3 9.3 

3 United Kingdom 28.2 4.5 

4 Canada 15.3 N/A 

5 Israel 15.0 N/A 

6 Germany 11.3 N/A 

7 India 11.1 1.16 

8 France 9.0 N/A 

9 South Korea 7.3 N/A 

10 Singapore 7.3 N/A 

Note: N/A indicates data not explicitly provided for the specific year/metric in the source 

snippets. 

This table quantifies the significant financial disparity in AI investment, directly 

illustrating the "capital chasm" faced by developing nations. The overwhelming 

dominance of the United States and China in cumulative and annual private AI 
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investment is evident, underscoring the challenge for other nations to compete. The 

substantial growth in global Generative AI private investment, while positive for the 

sector overall, is likely concentrated in these leading economies, further highlighting 

the exclusion of developing countries from this high-growth segment. The African 

Tech VC funding figures provide a regional perspective, showing a modest scale of 

investment despite signs of stabilization. This data is crucial for demonstrating the 

magnitude of the financial challenge and reinforcing the arguments about 

technological dependency and the emerging "AI oligarchy." 

8.7 Impact of International Regulations and Export 

Controls 
International geopolitical dynamics significantly influence AI adoption in developing 

countries, particularly through export controls on critical hardware. U.S. export 

controls on advanced computing chips (GPUs), initially designed to impede China's AI 

progress, may inadvertently be accelerating it by forcing innovation in efficiency 

within China.58 However, these controls have broader implications for developing 

nations. The new U.S. rule, effective January 2025, restricts sales of high-powered GPUs 

to over 100 countries, with exemptions only for 18 key allies (Tier I nations). Tier II 

countries, which include most of Africa, Latin America, Asia, the Middle East, and some 

EU members, face strict limits on GPU imports (approximately 50,000-100,000 Nvidia 

H100s from 2025-2027), while Tier III countries (e.g., China, Russia) are banned 

altogether.60 

In the long term, the limited allocation of 50,000 advanced GPUs will be insufficient for 

private entities in Tier II countries to develop leading AI models independently, 

potentially forcing them to import advanced AI models from Tier I nations.61 These 

restrictions also significantly hinder the development of data centers by Tier I 

companies within Tier II countries, as they are limited to locating no more than 25% of 

their computing capacity in Tier II countries overall, and no more than 7% in any 

single one.61 

The U.S. export controls on GPUs create a multi-tiered global market for AI hardware, 

effectively imposing a "geopolitical chokehold" on AI development in many developing 
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countries. Even if these nations possess the financial capital, their access to the most 

advanced chips is severely restricted, forcing them to either rely on less powerful 

hardware, embark on the long and costly process of developing their own indigenous 

capabilities, or import pre-trained models from dominant players. This reinforces 

technological dependency and undermines efforts towards "Sovereign AI".17 The 

restrictions on Tier I companies building data centers in Tier II countries further limits 

the development of local infrastructure, directly impacting local innovation 

ecosystems. This policy, while primarily aimed at geopolitical rivals, has significant 

collateral damage for developing countries, potentially widening the AI gap and forcing 

them into a position of perpetual technological followership. It also complicates 

international collaboration and investment, as companies must navigate complex and 

rapidly changing export regulations. 

8.8 Regionalization and Cultural Relevance: The 

Contextual Imperative 
For Generative AI to truly benefit developing countries, it must be relevant and 

adaptable to their unique local contexts. However, significant challenges arise from the 

global AI development paradigm, which often overlooks linguistic diversity and 

cultural nuances, creating a barrier to widespread and equitable adoption. 

Language Diversity and Low-Resource Languages 

Most major Large Language Models (LLMs) currently underperform for 

non-English—and especially low-resource—languages. These models are often not 

attuned to relevant cultural contexts and are frequently inaccessible in parts of the 

Global South.62 The internet, which serves as the primary training ground for these 

models, is overwhelmingly Anglophone; while only 20% of the world's population 

speaks English at home, nearly half of the training data for major AI models is in 

English.64 This inherent bias in training data leads to poor model performance for 

less-used languages, which in turn discourages their use and further reduces 

investment and interest in developing AI solutions for them.65 

Consequently, less-used languages and scripts (e.g., Ahirani, Sharda script, various 

non-Latin scripts) face an ever-greater risk of digital marginalization, potentially being 
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"wiped off the planet" as GenAI content is overwhelmingly in English.65 Furthermore, 

AI models can "hallucinate" or flatten linguistic richness, struggling with regional 

accents and variations, and producing grammatically correct but culturally tone-deaf 

content.64 This situation suggests a form of "linguistic imperialism" within AI 

development. The overwhelming dominance of English in AI training data and the 

underperformance of LLMs in low-resource and non-English languages is not merely a 

technical challenge; it poses a significant cultural and societal threat. If AI tools 

primarily cater to dominant languages, they risk accelerating the decline of minority 

languages and eroding cultural diversity.65 This directly impacts education, 

communication, and the ability of diverse communities to engage with and benefit 

from AI in their own cultural contexts. The lack of culturally nuanced output 57 further 

alienates non-English speaking populations from AI's potential benefits. This 

challenge undermines the inclusive potential of AI in developing countries, risking a 

situation where AI's advantages are primarily accessible to English-speaking or 

culturally Westernized elites, thereby entrenching internal inequalities and hindering 

the development of AI solutions tailored to local needs and values. 

Cultural Bias in AI Models and Datasets 

Beyond linguistic limitations, AI models trained in one cultural context may not 

perform optimally in another due to fundamental differences in language, social 

norms, and regulatory environments.57 A notable example is DALL-E 3, an image 

generation model, which, when asked to generate a picture of "breakfast," produced 

images of pancakes, bacon, and eggs, neglecting the diverse breakfast customs 

prevalent across the globe.57 This "North American bias" ingrained in many LLMs can 

lead to discrimination against people from diverse cultures.57 To mitigate this, adapting 

AI tools and guidelines to reflect the local context and the lived experiences of data 

annotators is crucial for ensuring the cultural relevance and accuracy of AI outputs.66 

However, access to representative datasets that accurately reflect African contexts and 

realities, for instance, remains paramount yet limited.23 

This issue points to a "contextual irrelevance" barrier to AI adoption. AI models exhibit 

cultural biases because they are predominantly trained on unrepresentative datasets, 

largely sourced from Western contexts.10 This leads to AI outputs that are not only 

inaccurate but also culturally insensitive or inappropriate for local use cases. For 
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developing countries, this means that even if they overcome infrastructure and cost 

barriers, the globally available AI models may not be fit-for-purpose for their unique 

societal, economic, and cultural challenges. This necessitates significant effort in local 

data collection and model adaptation, resources which developing countries often 

lack.23 Failure to address this limits the practical utility and trustworthiness of AI in 

developing countries. If AI solutions are not culturally relevant, they will face low 

adoption rates, fail to address local problems effectively, and potentially reinforce 

existing stereotypes or discrimination. This also means that AI's transformative 

potential for sectors like healthcare and agriculture, which are highly 

context-dependent, may not be fully realized. 

Need for Context-Specific Solutions 

Despite these challenges, AI offers novel solutions to longstanding challenges in 

healthcare, agriculture, education, and infrastructure development within emerging 

economies.1 Developing countries possess a unique opportunity to bypass traditional 

development stages through AI adoption, "leapfrogging" directly to advanced digital 

solutions tailored to their specific contexts.7 This requires not only adapting AI tools to 

suit the rich cultural and linguistic diversity prevalent in developing countries but also 

seamlessly integrating AI applications into their existing systems.13  

This highlights a "local innovation imperative" that stands in contrast to a "global 

template trap." The data indicates that AI's true potential in developing countries lies in 

its ability to provide "context-specific solutions" and enable "leapfrogging".1 However, 

the challenges of language diversity and cultural bias 57 push developing countries 

towards a "global template trap," where they are compelled to adopt AI models and 

solutions primarily designed for Western contexts. This creates a tension between the 

potential for localized innovation and the reality of relying on globally available, often 

culturally misaligned, AI. The success of national initiatives, such as the IndiaAI 

Mission 68 and AI for India 2030 3, hinges on their ability to foster indigenous 

development that directly addresses unique local needs, rather than simply importing 

foreign solutions. Failure to foster local innovation and adapt AI to specific contexts 

will limit the transformative impact of AI in developing countries, leading to 

suboptimal outcomes and missed opportunities for sustainable development, and risks 

creating a new form of technological dependence. 
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9. Lessons from Previous Technological 
Revolutions 
Artificial intelligence is consolidating at an extraordinary pace inside a small circle of 

rich states and hyperscale companies. If present trajectories hold, the next twenty 

years will see a decisive concentration of computing power, algorithmic standards and 

data capital in the United States, China, the European Union and a few close partners. 

For the rest of the world the danger is not abstract: missing the AI wave could 

replicate—and in several respects deepen—the structural dependence that followed 

earlier technological revolutions. 

What history tells us 

Throughout the last two centuries transformative technologies have repeatedly 

redrawn the map of global power. When Britain mechanised cotton spinning and laid 

its first railways, late-industrialising regions were forced into roles as raw-material 

suppliers and captive markets. During the age of electrification, countries able to wire 

entire national grids multiplied their productivity, while those without the capital 

watched finished goods pour in from abroad. Control of oil after 1945 reorganised 

foreign policy, enabling producers to dictate prices and conditions to import-dependent 

states. And over the past quarter-century, network effects on the internet have allowed 

a handful of U.S. platforms to become global utilities, reducing many local tech sectors 

to resellers. 

 
AI is rapidly concentrating within a few rich states and hyperscale companies, 

risking a deepened global technological divide. This trend mirrors historical 

technological revolutions where first-movers established dominance, leaving 

latecomers structurally dependent. 

The logic is always the same: high entry costs, tight intellectual-property protection 

and reinforcing network effects let first movers define the rules for everyone else. AI 

magnifies each of those ingredients. Frontier models are trained on tens of thousands 
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of cutting-edge GPUs, cost hundreds of millions of dollars, and improve through every 

new user prompt—meaning even passive participation by latecomers feeds the 

incumbents’ advantage. 

How dependence will form 

Export-controlled compute: Nine out of ten of the most powerful accelerators already 

ship from fabs under U.S., Japanese or Dutch jurisdiction. Licensing regimes that once 

applied to nuclear centrifuges are now being extended to advanced chips. Artificial 

scarcity locks public laboratories in Africa, South-East Asia and Latin America onto 

older silicon; their work is condemned to trail state-of-the-art by several model 

generations. 

Algorithmic rent extraction: Where today businesses import petroleum, tomorrow 

they may import cognition: language translation, contract drafting, medical triage, 

logistics planning—all metered by the token and priced in hard currency. By the 

mid-2030s, a mid-income country of a hundred million people could spend more on AI 

services than it now pays for refined fuel, draining reserves and crowding out domestic 

investment. 

Standards capture: Safety evaluations, watermarking methods and audit pipelines are 

already being written inside the largest AI clusters. Regulators in smaller economies 

will have little practical choice but to adopt those tool-chains sight-unseen or find 

themselves cut off from global supply chains. Nuances of local law, minority languages 

and indigenous knowledge simply will not appear in the reference suites that decide 

whether a system is “responsible” or “safe”. 

Brain-drain flywheel: Where compute is scarce, research talent migrates—physically 

or through remote contracts—to the cloud regions that hold the chips. Universities at 

home become feeder programmes; public-sector AI projects wither; income gaps 

widen between a tiny cohort of offshore contractors and the rest of the labour market, 

sowing social tension. 

Data enclosure: Vast troves of agricultural, health and climate data from the Global 

South are already flowing into open-science repositories funded by Northern 

foundations. Once refined into proprietary models, the insights are resold to the 
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original data owners on a subscription basis, echoing the way colonial botanists 

exported seed genomes that later returned as patented hybrids. 

Energy bottlenecks:  Training and serving ever-larger models could require an 

additional five hundred gigawatts of steady electricity worldwide by 2035. States 

without abundant renewables or nuclear baseload will confront a bitter choice: ration 

domestic power or outsource their AI ambitions to foreign clouds, often on terms 

bundled with LNG plants or debt-financed grid upgrades. 

Kill-switch diplomacy: As customs screening, tax collection and health triage move 

onto proprietary AI-as-a-service platforms, a temporary suspension—intentional or 

accidental—can paralyse an entire government. The mere possibility of outage 

becomes leverage in bilateral negotiations, the digital equivalent of closing a canal or 

turning off a pipeline. 

Cultural homogenisation: Generative systems trained mainly on English, Mandarin 

and major European languages will dominate search, entertainment and education. 

Minority languages risk falling below the digital threshold of usability; local creative 

industries are sidelined by algorithms that recommend content with global but not 

necessarily local resonance. 

 
Dependence will form as developing nations face restricted access to advanced 

AI compute and talent, forcing reliance on foreign-controlled AI services and 

standards. This creates vulnerabilities in critical functions, drains resources, and 

risks cultural homogenization. 

Likely macro-impacts by 2045 

If nothing interrupts these forces, import bills for AI services could rival today’s energy 

imports, current-account deficits will widen, and domestic ICT value-added could 

shrink to a fraction of its present share of GDP. Only a small percentage of the 

most-cited AI research is likely to originate outside the core countries, leaving 

peripheral economies dependent on external intellectual property just as they once 

depended on imported turbines or chemical patents. 
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Socio-political consequences 

Fiscal stress will tempt governments back to the IMF, now negotiating not only fiscal 

targets but also clauses on digital governance. Policy autonomy will narrow as essential 

functions run on foreign clouds. Authoritarian leaders may purchase turnkey 

predictive-policing suites, entrenching themselves with tools designed and updated 

abroad. The traditional ladder of export-led industrialisation could break: as rich 

markets automate textile sewing and electronics assembly, the jobs that once lifted 

East Asia out of poverty will disappear before wages in Africa or South Asia converge. 

And as languages vanish from the algorithmic mainstream, cultural 

self-determination—and the pluralism that underpins democratic resilience—will 

erode. 

Why catch-up will be harder than before 

Speed is one reason: AI capability doubles every few months, not every few decades. 

Intangibility is another: weight files can be embargoed without the public drama of 

warships or missile tests, reducing political urgency until dependence is entrenched. 

Finally, every prompt a latecomer submits to a frontier model improves that model; by 

trying to close the gap, followers deepen it. 

 
If current AI trends persist, developing nations by 2045 could face substantial AI 

service import bills, reduced domestic ICT value, and increased intellectual 

property dependence. Socio-political consequences include fiscal stress, 

diminished policy autonomy, and the loss of traditional industrialization 

pathways. Catching up will be exceptionally difficult due to AI's rapid 

advancements, the subtle nature of technology embargoes, and the fact that 

latecomers' usage inadvertently enhances dominant models, further widening 

the gap. This scenario portends a future where economic and societal progress 

for many hinges on external AI capabilities. 
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10. Training a GenAI model: different 
strategies & Efficient alternatives 
Pretraining a Large Language Model (LLM) traditionally involves training a 

transformer-based model on massive unlabeled text corpora. This process uses diverse 

datasets (e.g. web crawl data, books, code, Wikipedia) amounting to hundreds of 

billions of tokens For example, OpenAI’s GPT-3 (175 billion parameters) was trained on 

about 300 billion tokens and required an estimated 1.3 million kWh of electricity 

(roughly equivalent to $4–$5 million USD in compute cost). Meta’s LLaMA-2 (70B) 

needed 1.72 million GPU-hours on 2048 A100 GPUs, consuming ~0.688 GWh of energy. 

These figures translate to millions of dollars in electricity and hardware—LLaMA-2’s 

training run emitted ~291 metric tons of CO. Newer models are even costlier: LLaMA-3.1 

(405B) reportedly required 39.3 million GPU-hours on H100 GPUs (27.5 GWh of 

electricity), although improved hardware efficiency kept its carbon footprint similar to 

LLaMA-2’s at ~240 tons CO₂ 

Such resource requirements demand specialized infrastructure. Compute Clusters: 

Pretraining often runs on large clusters of accelerators (GPUs or TPUs). For instance, 

LLaMA-3.1 training used 32,000 NVIDIA H100 GPUs in parallel. These clusters must 

also be fed by high-throughput storage for the terabyte-scale datasets and supported 

by robust networking. Memory and Storage: A 175B-parameter model in FP16 requires 

~350GB just to store weights, so distributed memory across many devices is essential. 

Datasets on disk can exceed hundreds of terabytes once processed. Checkpoints 

(snapshots of model weights during training) can be hundreds of GB each, incurring 

storage and I/O costs. 

Training Time and Energy: Even with massive parallelism, pretraining can take many 

days or weeks. This results in significant energy consumption and carbon emissions. A 

study estimated training GPT-3 consumed ~1.3 GWh of electricity, comparable to 

powering hundreds of homes for a year. Such power usage raises environmental and 

cost concerns, especially for organizations without subsidized compute. Moreover, the 

financial burden means only a few tech giants or well-funded institutions have 

traditionally undertaken training models from scratch. 
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Challenges and Redundancies: A notable drawback is that many LLM projects repeat 

similar expensive steps. The same Common Crawl web texts and Wikipedia articles are 

used to pretrain multiple models, leading to redundant compute spend across the field. 

Each new model often “relearns” basic grammar and facts from scratch. This 

redundancy has prompted calls for more reusable foundation models and shared 

checkpoints to avoid duplicating efforts. Another challenge is data overlap and quality: 

Large corpora contain redundant or low-quality data that can slow training or affect 

performance. Techniques like data deduplication can improve efficiency, but are not 

yet. In sum, standard pretraining is extremely costly in terms of data, compute, time, 

and energy. These hurdles motivate the search for more efficient approaches to LLM 

development, as we explore in this whitepaper. 

Overview of training methodologies 

This section surveys the spectrum of training methodologies for LLMs and 

multi-modal LLMs, from how the base models are pretrained to various fine-tuning 

and adaptation techniques that minimize full retraining needs. We cover traditional 

pretraining, continuous pretraining, alignment via human feedback, efficient 

fine-tuning methods, and novel paradigms like model merging and swarm learning. 

10.1 Pretraining Techniques 

Standard Pretraining: This refers to the one-time training of a model from random 

initialization on a broad corpus. As described, it is compute-intensive and typically 

done only for foundational models. The entire model’s weights are learned by 

optimizing a self-supervised objective (predicting masked tokens or next tokens) over 

massive text data. Once this phase is completed, the model has general language 

proficiency but lacks task-specific alignment (it may produce raw, unaligned outputs). 

The cost and difficulty of this step incentivize doing it only once per model size; after 

that, one can reuse the pretrained checkpoint for multiple purposes. 

Continuous Pretraining (CPretraining): Continuous pretraining means further 

training an already pretrained model on new data to refresh or specialize its 

knowledge. Instead of starting from scratch, we initialize with an open or existing 

model and continue the language modeling training on additional corpora relevant to 
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the target domain or timeframe. This approach updates the model’s general knowledge 

without the full cost of training from random weights. For example, an enterprise 

might take an open 7B model and continuously pretrain it on internal documents or 

recent news to keep it up-to-date. Continuous pretraining can be much cheaper than 

initial pretraining. Gili Nachum estimates that continuing to pretrain a 7B model on ~1 

billion tokens (e.g. 5,000 domain PDFs) would take on the order of 57 hours on 8×A100 

GPUs (costing around $2.3K on AWS)– a feasible expense for many companies. Key 

considerations in continuous pretraining are avoiding catastrophic forgetting (losing the 

original knowledge) and managing domain shift. Usually, a small learning rate and 

sometimes intermixing some of the original pretraining data can help the model retain 

general ability while learning new content. 

 
Standard pretraining involves training a foundational model from scratch on a 

vast dataset, a compute-intensive process resulting in general language 

proficiency. In contrast, continuous pretraining further trains an already 

established model on new, specialized data to refresh or update its knowledge, 

offering a more cost-effective way to adapt models for specific domains or 

recent information. 

​

10.2 Post-Pretraining Alignment and Fine-Tuning 

Techniques 

Once an LLM is pretrained (either from scratch or via continuous updates), it often 

undergoes post-training alignment to make it more useful and safe for end-users. 

Several methodologies exist: 

1.​ Supervised Fine-Tuning (SFT): This involves further training the model on 

task-specific or instruction-following data via supervised learning. For instance, 

ChatGPT’s precursor (InstructGPT) was fine-tuned on prompt-response pairs 

written by humans to teach the model to follow user instructions. SFT is 

relatively straightforward: given example inputs and desired outputs, adjust the 
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model’s weights to better produce the desired outputs. This phase typically uses 

a much smaller dataset (tens of thousands of examples) and is far less costly 

than full pretraining – often a few GPU-hours to days. However, full-model 

fine-tuning can still be memory-intensive; it updates all parameters, which for a 

30B+ model requires multi-GPU setups or memory optimization (since 

gradients and optimizer states for all weights must be stored).​

 

2.​ Reinforcement Learning with Human Feedback (RLHF): RLHF has been 

crucial to aligning LLMs with human preferences. In RLHF, the model is 

optimized not just to predict text, but to produce helpful, harmless responses as 

judged by humans. The typical RLHF pipeline involves three steps;​

 

○​ Step 1, SFT – start with a supervised fine-tuned policy model (π_SFT) 

that can follow basic instructions; 

○​ Step 2, Reward Modeling – train a separate reward model to score 

outputs by quality, using a dataset of human preference comparisons; 

○​ Step 3, RL fine-tuning – further train the policy (now π_RL) using an 

algorithm like Proximal Policy Optimization (PPO) to maximize the 

reward model’s score while constraining the policy not to drift too far 

from the SFT model. 

While effective, RLHF is complex and resource-intensive: it requires 

human or high-quality proxy feedback and multiple training stages. 

Moreover, PPO-based RLHF introduces a “critic” (value) network which 

doubles memory usage and adds instability.​

 

3.​ Advanced RLHF Variants (RLOO, GRPO, DPO): Recently, researchers have 

proposed lighter-weight alternatives to PPO for RLHF. Reinforce Leave-One-Out 

(RLOO) and Group Regularized Policy Optimization (GRPO) are two such algorithms 

that eliminate the need for a separate value (critic) network, reducing 

complexity. Instead, they estimate the advantage of a response by comparing it 

to other sampled responses for the same prompt (for RLOO) or normalizing 

within a batch (for GRPO). This removal of the value model cuts memory usage 
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in half and simplifies training. However, RLOO and GRPO must carefully 

estimate advantages to remain stable. These methods can still suffer from high 

variance or reward hacking (over-optimizing to the reward model) if not 

properly regularized. Another notable approach, Direct Preference Optimization 

(DPO), foregoes the RL step entirely by directly fine-tuning on the comparison 

data via a calibrated objective, achieving results comparable to PPO-based RLHF 

with less complexity. The emergence of RLOO, GRPO, DPO, and others indicates 

active research to reduce the burden of alignment training while preserving the 

benefits of RLHF. 

10.3 Parameter-Efficient Fine-Tuning (PEFT) 

Instead of fine-tuning all tens of billions of weights of an LLM for each new task (which 

is memory-intensive and risks overfitting or forgetting), parameter-efficient 

fine-tuning (PEFT) methods update only a small subset of parameters or introduce 

additional small modules. This drastically lowers GPU memory requirements and 

allows reusing a single base model for many purposes via different adapter modules. 

1.​ Adapters: Originally developed for Transformer models in NLP, adapter layers 

are small bottleneck networks inserted at various points (e.g. after the 

feed-forward or attention sublayers) and trained for the downstream task while 

the original model weights remain frozen. Adapters act as task-specific 

“patches.” Because only the adapter weights (often <5% of total parameters) are 

trained, the approach is efficient in data and compute, and it preserves the 

original model’s knowledge, avoiding catastrophic forgetting. An added benefit 

is modularity: one can keep a library of adapter modules for different domains 

or languages and hot-swap them on the same base model. This approach was 

used to great effect in multi-domain models and allows regionalization – e.g. 

adding a country- or language-specific adapter to a global model.​

 

2.​ LoRA (Low-Rank Adaptation): LoRA is a popular PEFT technique that injects 

trainable low-rank matrices into each layer’s weight update. In practice, LoRA 

adds a pair of small rank-decomposed matrices (A and B) that adjust the output 

of the transformer layer. Only A and B are learned (a few million parameters 
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even for a 7B model), while the original weight stays fixed. LoRA adds no 

inference latency because at runtime the low-rank updates can be merged into 

the main weight matrix. This approach has been highly successful in 

fine-tuning LLMs with minimal compute. It has been reported that LoRA 

fine-tuning can reduce training overhead by up to 70% compared to full-model 

tuning. LoRA’s efficiency and simplicity (no model architecture change aside 

from additional weights) made it a default for many LLM fine-tuning projects in 

2023.​

 

3.​ DoRA (Weight-Decomposed LoRA): Despite LoRA’s success, a gap often 

remains between LoRA-tuned models and fully fine-tuned models in accuracy. 

In 2024, NVIDIA researchers introduced DoRA, which aims to close this gap. 

DoRA stands for Weight-Decomposed Low-Rank Adaptation. It factorizes each 

weight matrix in the pretrained model into two components: a magnitude vector 

and a direction (unit vector) for each weight, then applies low-rank adaptation 

on the high-dimension directional component. By doing so, DoRA can adjust 

not just a small additive delta, but also modulate the weight magnitudes, 

improving capacity. Importantly, DoRA still avoids any increase in inference 

compute – after fine-tuning, the adapted weights can be merged back. 

Empirically, DoRA has outperformed LoRA on benchmarks (e.g. +3 to 4 points 

higher accuracy on reasoning tasks with LLaMA models). It improves training 

stability as well. In short, DoRA is a drop-in enhancement over LoRA that yields 

closer-to full fine-tuning performance with the same efficiency benefits.​

 

4.​ QLoRA: A major recent breakthrough in PEFT is QLoRA (Quantized LoRA). 

QLoRA tackles the memory bottleneck by quantizing the base model to 4-bit 

precision during fine-tuning, while still learning LoRA adapters in 16-bit. By 

backpropagating through a 4-bit model, QLoRA drastically cuts RAM 

usage—enough to fine-tune a 65B model on a single 48GB GPU. This 

democratized experimenting with very large models. Notably, QLoRA preserved 

full 16-bit fine-tuning performance; the team demonstrated a 33B and 65B 

LLaMA tuned via QLoRA (nicknamed “Guanaco”) that achieved 99.3% of 

ChatGPT’s performance on a benchmark, after just 24 hours of training on one 
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machine. QLoRA introduced technical innovations like a new quantization data 

type (NF4) for minimal accuracy loss and double-quantization to reduce 

memory further. The success of QLoRA means even resource-constrained teams 

can iterate on large models by fine-tuning, without needing a mega-cluster.​

 

5.​ Other PEFT Variants: Many other techniques fall under PEFT: Prefix Tuning 

(prepends learnable tokens to prompts), Prompt Tuning (optimizes an 

embedded prompt), and Adapter fusion. There are also research efforts to 

combine ideas: e.g. DeFT (Data-Efficient Fine-Tuning) which selects a core 

subset of data to fine-tune on, thereby reducing the data needed by up to ~70% 

while maintaining performance. Another direction is reducing activation 

footprint during fine-tuning (to save memory) – for example by pruning 

unnecessary neurons (some work has humorously noted many transformer 

layers are partly redundant). The key takeaway is that PEFT methods greatly 

minimize the burden of adapting LLMs. Instead of retraining a model from 

scratch or fine-tuning billions of weights for each new task, one can train a few 

million (or even thousand) parameters to get excellent results. This makes LLM 

fine-tuning viable for enterprises and researchers without access to huge 

compute clusters.​

 

6.​ Model Merging and Swarm Models: Beyond fine-tuning a single model, a 

creative approach is to merge or ensemble multiple models to combine their 

strengths. Model merging usually means taking two or more models (with the 

same architecture) and literally combining their weights (e.g. by weighted 

averaging) to create a new model. This can extend a model’s capabilities without 

training on all tasks simultaneously. For instance, one could merge a model 

fine-tuned for legal QA with another fine-tuned for medical QA, yielding a 

single model with both skills. Merging can be as simple as linear interpolation 

of weights, or more advanced like SVD-based merges or nonlinear interpolation 

(e.g. SLERP in weight space). Recent “model soups” and “Franken-models” attest 

to merging’s potential: some top entries on open LLM leaderboards are merges 

of other fine-tuned models. There are even Frankenstein MoEs, which merge 

models by creating a Mixture-of-Experts with different expert weights frozen. 
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Meanwhile, swarm models or multi-agent ensembles involve orchestrating 

several LLMs at runtime. In a swarm, each model (agent) might specialize (one 

could be good at coding, another at language translation), and a router or voting 

system decides which model(s) handle a given query. This concept is analogous 

to an expert committee – it can outperform any single model if done well. Early 

research on foundation model swarms suggests that carefully optimized 

cooperation among models (through learned graphs or controllers) can yield 

robustness and better overall performance. For resource-constrained users, 

swarm approaches are promising because multiple smaller models (which are 

easier to train or fine-tune individually) can collectively cover ground that a 

huge monolithic model would, spreading out the compute requirements. 

 
Parameter-Efficient Fine-Tuning (PEFT) techniques, such as Adapters, LoRA, 

DoRA, and QLoRA, significantly reduce the computational burden of adapting 

large language models (LLMs) by training only a small subset of parameters or 

introducing minimal new modules. This allows for efficient task-specific 

customization without retraining the entire model, making LLM fine-tuning 

more accessible. Complementing this, model merging and swarm models offer 

creative ways to combine the strengths of multiple LLMs, either by merging 

their weights or orchestrating them as a multi-agent ensemble, effectively 

extending capabilities and distributing compute requirements. 

11. Alternatives to Expensive Pretraining 

Given the immense expense of pretraining from scratch, researchers and practitioners 

have developed alternative strategies to bootstrap powerful models without incurring 

prohibitive costs. These techniques leverage existing open models, modular 

adaptations, and creative combinations to achieve strong results for specific domains, 

languages, or tasks. 
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11.1 Leveraging Open Models as Base Initializations 

Perhaps the most straightforward shortcut is: don’t reinvent the wheel. If a reasonably 

good model already exists, use it as the starting point. The proliferation of open-source 

LLMs (GPT-J, GPT-NeoX, Bloom, LLaMA, Falcon, etc.) offers many foundation models 

that can be downloaded and reused. Organizations with limited resources can take a 

model like LLaMA-2 (released by Meta) and fine-tune or extend it, rather than training 

a new model from scratch. This practice has enabled dozens of new derivatives at a 

fraction of the original training cost. For example, Stanford’s Alpaca model took Meta’s 

7B LLaMA and fine-tuned it on 52,000 instruction-response examples generated by a 

larger model (text-davinci-003). The total expense was under $600 (OpenAI API fees 

<$500 for data generation + a few hundred for fine-tuning compute). Alpaca’s 

performance turned out to be remarkably close to that of the much larger 

text-davinci-003 on the evaluated tasks – all achieved by repurposing an existing 

pretrained model and minimal new training. This “open model + small fine-tune” 

recipe has been replicated widely (e.g. Vicuna, Dolly, and many other ChatGPT-like 

models built on LLaMA or OPT). It demonstrates that enterprises or countries can get a 

high-quality model by building on an open foundation, instead of paying the full cost 

themselves. 

Reusing open models also promotes transparency and sovereignty. For example, if a 

country is concerned about reliance on API access to a foreign proprietary model, they 

might take an open model and adapt it to their language. The UAE’s Technology 

Innovation Institute followed this path to create Falcon, an Arabic and English LLM, by 

gathering regional data and training on top of existing architectures (they released 

Falcon openly so others could further leverage it). Similarly, Bloom (176B), developed 

via a global collaboration, was explicitly intended as a public initialization that any 

language community could fine-tune for their needs, rather than everyone collecting 

and training on the same Common Crawl again. 

11.2 Regionalization via Adapters 

A powerful technique for local adaptation is to use adapters or LoRA modules targeted 

to region-specific data. Instead of one monolithic model trying to cover all languages 
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and dialects (which requires enormous data), one can train small adapter modules on 

local languages or domains and plug them into a global model. Because adapters don’t 

overwrite the original weights, the base model’s multilingual knowledge remains 

intact, and the adapter augments it with regional specifics. For instance, one could 

have a core model pretrained on multiple languages, and then add a Swahili adapter, 

Hindi adapter, etc., each trained on a relatively small corpus in that language. This 

approach was explored in the MAD-X framework for cross-lingual transfer with BERT: 

language adapters allowed adding new languages without catastrophic forgetting of 

others. In the LLM context, this means a country could take an existing large model 

and inject local cultural and linguistic knowledge via an adapter. It is much cheaper 

than full pretraining in that language. Indeed, there are initiatives in Africa (e.g. 

Masakhane’s projects or Lelapa’s Inkuba LM) that fine-tune adapters for African 

languages on top of existing models. Such efforts drastically lower the barrier for 

including under-represented languages in AI. Regional adapters can also encode 

cultural norms or domain jargon (finance, law) prevalent in that region, which would 

be too niche to appear often in a general pretraining corpus. 

A concrete example is China’s approach to LLMs: researchers have used open English 

models and continued pretraining them on large Chinese text corpora, then fine-tuning 

with adapters for alignment. This two-step process (base reuse + regional pretraining) 

proved effective for creating competitive Chinese MLLMs at a lower cost. We also see 

multinational companies like Orange partnering with model providers to fine-tune 

LLMs for African French, Arabic dialects, etc., rather than building new models from 

zero. The key point is that adapters enable modular regionalization: one base model 

can serve many locales, each with its adapter. This avoids training and maintaining 

separate full models per locale, saving enormous compute. 

11.3 Model Selection, Routing, and Merging 
(“Advantages-Based” Strategies) 
Instead of a single all-encompassing model, another strategy uses multiple specialized 

models and intelligently selects or combines them for a given task/query: 
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1.​ Specialist Models: An enterprise might curate a suite of smaller models, each an 

expert in something (one for software code, one for customer support dialogue, 

one for legal text). Then a light-weight router algorithm (possibly a classifier or a 

prompt-based switch) chooses which model to apply for each user query. This 

way, each model is simpler and trained on a focused dataset, making their 

training feasible on limited resources. The router ensures the query is handled 

by the best model (advantage-based selection). For instance, a query containing 

programming terms could be routed to a code model. This approach is 

reminiscent of Mixture-of-Experts, but can be done at a higher level without an 

integrated MoE architecture. It trades a bit of complexity (managing N models) 

for potentially large efficiency gains (N smaller trainings instead of one huge 

training).​

 

2.​ Ensembling and Voting: In cases where quality is paramount, multiple models 

can each generate an answer, and then an ensemble method (like majority 

voting or a separate evaluator model) picks the final output. This “swarm” style 

can improve accuracy without any single model needing to be state-of-the-art 

– the collective compensates via diversity. While running several models is 

slower, one can constrain this to critical uses. Notably, OpenAI’s early work on 

GPT-4 hints that they used model ensembling techniques (though details are 

proprietary). In the open community, projects like Swarms and others are 

exploring multi-agent LLM systems.​

 

3.​ Model Merging: As discussed in Section 2, merging fine-tuned models is 

another alternative to training one model on all data. For example, instead of 

one costly run on a combined dataset, train two smaller runs on parts, then 

merge. A real scenario: Company A fine-tunes a base model on legal contracts, 

Company B on medical texts. Rather than each company training a model on 

the union of legal+medical (which doubles data and cost), they could share their 

fine-tuned weights and merge them. Techniques like weight interpolation or 

task vector addition allow this combination. The result approximates what a 

joint training would have achieved, at a fraction of compute (each party did 

half). There are challenges – merged models can have inconsistencies or require 
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some additional tuning – but research is showing promising results where 

merges even outperform original models on certain benchmarks. This hints that 

merging isn’t just cost-saving; it might create an ensemble-like effect within 

one set of weights. 

11.4 Continuous Pretraining on Local Data 

A special case of alternatives to full pretraining is when you do need to train on a lot of 

text, but you start from a strong base model rather than from scratch. We touched on 

this in continuous pretraining: for example, an institution with a large proprietary 

dataset (say millions of domain-specific documents) can continue pretraining a public 

model on this data. This effectively blends the general knowledge of the public model 

with the specific knowledge in the local data. Because the model already knows how to 

form sentences and has broad facts, the additional training is far more 

sample-efficient than starting fresh. Empirical evidence supports this: continued 

pretraining on domain data yields sizable gains on domain tasks (e.g. a medical LLM 

pretrained further on medical journals will do better in that domain’s QA). 

Importantly, continuous pretraining can be done gradually and periodically – a form of 

streaming training. An enterprise might schedule regular updates where new data (say, 

the past month’s documents or locally relevant web content) is used to refresh the 

model. This keeps the AI up-to-date with current information, addressing the 

“knowledge cutoff” problem of static models. Several literature case studies have 

shown this approach: one case found that updating a model on news articles enabled it 

to answer questions about current events much better than the original. Another 

example is the open-source project RedPajama which sought to re-pretrain a Llama 

model on a fresh web crawl, indicating that community-driven continued training is 

viable. 

One has to manage forgetting in continuous pretraining. Techniques such as 

AdapterSwap train new adapters on new data and occasionally swap or merge adapters 

to integrate new knowledge while keeping old knowledge safe. This can be seen as a 

hybrid of adapters and continuous training – a promising research direction to enable 

lifelong learning in LLMs without catastrophic forgetting. The overarching message is 
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that pretraining need not be a one-shot, all-or-nothing endeavor: by incrementally 

training on local data, even nations with moderate compute can build competitive 

models over time. 

11.5 Examples of Successful Low-Cost Adaptations 

To illustrate these alternatives, consider a few concrete examples: 

1.​ Stanford Alpaca (2023): Already discussed, Alpaca distilled ChatGPT 

capabilities into a 7B model for ~$600 by leveraging OpenAI’s API and an open 

base model. This sparked a wave of similar projects because it showed what 

minimal data + existing model can achieve. 

2.​ Databricks’ Dolly (2023): Dolly was a 6B model fine-tuned on a small (~15K 

record) instruction dataset crowdsourced by Databricks. They started from 

EleutherAI’s GPT-J (an open 6B model) and produced a useful chatbot for 

essentially the cost of a few hours on 1 GPU. Dolly’s quality wasn’t 

state-of-the-art, but it was good enough for many internal applications and 

proved the concept of training “ChatGPT for less than $100”. 

3.​ BloombergGPT (2023): Bloomberg built a 50B model for finance by mixing an 

open public dataset with a large internal financial text dataset. While they did 

train from scratch (since no finance-focused base existed at the time), the 

project highlighted that domain-specific LLMs can be obtained by augmenting a 

general corpus with domain data. If BloombergGPT were done now, one could 

imagine taking an existing 50B model and only doing the latter half of training 

on the finance data – saving time. 

4.​ Lelapa’s Inkuba (2024): A project out of South Africa (Lelapa AI) trained an LLM 

covering several African languages (Swahili, Zulu, Hausa, etc.). Rather than 

gather a mammoth corpus for each language, they likely leveraged multilingual 

transfer: e.g. use an existing multilingual model or translate data from English. 

This significantly lowers the barrier for African NLP. It showcases how smart 

data augmentation and transfer can replace brute-force data collection. 

These case studies underscore that through openness, clever data generation, and 

modular training, high-quality models can be developed at a fraction of the traditional 
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cost – making LLM technology more accessible to enterprises and regions with limited 

resources. 

12. Infrastructure and Optimization 
Infrastructure choices and software optimizations play a pivotal role in reducing the 

cost of training and deploying LLMs. This section discusses how to make the most of 

limited or heterogeneous hardware – including CPUs, non-NVIDIA accelerators, and 

edge devices – and highlights techniques to maximize efficiency (from quantized 

models to distributed systems and optimizer improvements). 

12.1 Hardware Constraints: Making Do with What 

You Have 

Not everyone has a state-of-the-art GPU cluster. Many organizations must work with 

CPUs or consumer-grade GPUs. Fortunately, recent advances enable LLM use on 

modest hardware: 

1.​ CPU-Only Environments: While CPUs are far slower than GPUs for training 

large models, they can handle smaller models or reduced-precision inference. 

Optimized libraries like Bud Runtime, Intel’s oneDNN and AI accelerators (like 

Intel’s DL Boost on Xeon) offer some speedup for matrix ops. A notable project is 

LLAMA.cpp, which brought LLaMA model inference to commodity laptops by 

optimizing the transformer operations for CPUs and using 4-bit quantization. It 

showed that a 7B model can generate text on a CPU in reasonable time (a few 

tokens per second). For CPU training, frameworks exist to distribute a model 

across many CPU cores or machines (Facebook’s Fully Sharded Data Parallel can 

use CPU memory to store model shards). It’s not efficient for full pretraining, but 

fine-tuning a smaller model on CPUs is sometimes feasible overnight. In any 

case, supporting CPU inference is important for broad deployment, since servers 

and devices without GPUs will need to run these models.​
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2.​ Apple Silicon (M1/M2) and Mobile Chips: Apple’s M1/M2 chips have built-in 

neural engines and strong GPUs that punch above their weight in ML tasks. 

Apple has actively optimized CoreML and PyTorch (with an MPS backend) for 

these chips. In fact, Apple demonstrated running a 8B parameter LLaMA-3.1 

model entirely on an M1 Max at ~33 tokens/second – a real-time speed. This was 

achieved by converting the model to Apple’s neural engine format (16-bit 

weights with throughput-optimized kernels) and using the unified memory 

efficiently. Likewise, mobile phones are now seeing LLMs: e.g. an iPhone 14 Pro 

can run a 7B model like Mistral 7B at a slower rate (maybe 1-2 tokens/sec) 

thanks to 4-bit quantization and offloading to the Neural Engine. These 

developments mean personal devices can host an AI assistant without any cloud 

service, ensuring privacy and offline capability. For enterprises, leveraging 

employees’ smartphones for some AI tasks (on-device) might reduce cloud 

inference costs.​

 

3.​ Intel GPUs (Arc, Data Center Max): NVIDIA’s dominance in AI compute has 

meant less software support for others, but that’s changing. Intel’s Arc series 

(for consumers) and their Data Center GPU Max (Ponte Vecchio architecture) are 

capable hardware that often goes underutilized. Projects like Intel’s BigDL-LLM 

and IPEX (Intel Extension for PyTorch) have started enabling LLM fine-tuning and 

inference on Intel GPUs and CPUs. For example, Intel published guides on 

fine-tuning LLaMA-2 on their GPUs using BigDL, and demonstrated LoRA 

fine-tuning on a GPU Max cluster. While performance and software maturity 

are still catching up to CUDA, these alternatives can be cost-effective (Intel’s 

data center GPUs might be cheaper or more available in some regions than 

A100/H100). Embracing heterogeneous hardware by using frameworks that 

abstract the device (like oneAPI or DirectML) can let an organization use 

whatever silicon they can procure – be it AMD, Intel, or older NVIDIA cards – 

thus mitigating supply or embargo risks.​

 

4.​ Edge Devices and IoT: Beyond phones, think of Raspberry Pi or 

microcontrollers – running an LLM here sounds fanciful, but tiny models 

(perhaps 100M parameters distilled from a larger model) could run on such 
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devices for simple tasks (like voice commands in appliances). Techniques like 

algorithmic distillation (training a smaller student model on the outputs of a 

large teacher) are used to produce compact models that preserve some 

capabilities of LLMs. An example is the 30x smaller student models from Meta’s 

DistilBERT and others – not an “LLM” in parameter count, but often sufficiently 

fluent for narrow applications. This could be critical for edge AI where network 

connectivity is limited or latency must be ultra-low. 

 
Hardware constraints can be overcome by optimization and smart scaling-down. 

The landscape of LLM deployment is expanding from cloud GPU clusters to 

Macs, phones, and beyond, enabling more inclusive AI adoption. 

12.2 Efficient Model Architectures and Quantization 

The architecture of a model directly impacts its compute and memory needs. Standard 

Transformers are heavy, but researchers are inventing more efficient variants: 

1.​ BitNet – 1-bit Transformers: An extreme but promising idea is training models 

with binary or 1-bit weights. Microsoft’s BitNet is a recent architecture that does 

exactly this. In BitNet, the linear layers are replaced with BitLinear layers that 

constrain weights to 1-bit during training (with some tricks to maintain 

stability). The result is a model that can have an 8x smaller memory footprint 

(1-bit vs 8-bit) and potentially use correspondingly less energy. In their 

experiments, BitNet models achieved comparable perplexity to FP16 models 

while significantly reducing memory and energy usage. Moreover, BitNet 

models followed similar scaling laws to full-precision ones, suggesting they can 

be scaled up without hitting a performance wall. This is a radical reduction of 

the pretraining burden: a 1-bit 100B-parameter model effectively might consume 

resources like a 12.5B model in 8-bit. BitNet is still cutting-edge research, but it 

signals a future where model sizes (in terms of effective parameters) can grow 

with far less cost. 

2.​ Low-Bit Quantization: Even outside of specialized architectures, applying 

post-training quantization dramatically reduces resource needs. It’s now 
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common to serve models in 8-bit or 4-bit integer formats with negligible 

accuracy loss. For training, 8-bit optimizers (such as 8-bit Adam from the 

BitsandBytes library) reduce memory by half for optimizer state, and mixed 

precision training (FP16/BF16) is standard. The frontier is training in 4-bit or 

2-bit. QLoRA already demonstrated fine-tuning in 4-bit effectively. Going lower 

often requires new techniques (since naive 2-bit training can fail due to 

quantization error). Research into ternary or binary networks (like XNOR nets in 

vision) is being adapted to LLMs. If successful, one could imagine pretraining a 

model in say 4-bit from the start, cutting the GPU memory and communication 

costs by 4x. This would directly translate to needing fewer GPUs or fitting larger 

models in the same budget. 

3.​ Efficient Attention and Sparse Models: Large model training is also 

benefitting from architectural tweaks that reduce complexity. Sparse 

Transformers can cut down the O(n^2) attention cost. For example, a MoE model 

with 16 experts (each smaller) can outperform a dense model of the same size 

with less compute, because for each token only 2 experts are active (making the 

forward pass sparse). Google’s Switch Transformer showed massive models 

(trillion+ parameters) could be trained at the same cost as dense models 1/4 the 

size, thanks to MoE routing. For enterprises, using MoE or other conditional 

computation means you don’t have to run every computation for every input – 

saving time. Another innovation is Retentive Networks or RWKV, which 

re-imagine the transformer with RNN-like characteristics to allow streaming 

and potentially lower memory usage. These are more experimental but indicate 

that the community is actively trying to find architectures that get more out of 

each FLOP. 

 
By embracing quantization and architecture innovation, one can significantly cut 

down the effective compute requirements for training and inference. Quantization 

in particular is a low-hanging fruit – there is little reason today to serve an LLM 

in full 16-bit precision when 4-bit works. The savings multiply across the whole 

pipeline. 
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12.3 Distributed and Hybrid Computing Approaches 

When local hardware is limited, why not combine resources across many machines? 

Distributed computing for LLMs comes in two main flavors: within an organization 

(cluster or cloud) and across organizations (collaborative networks). 

1.​ Cluster-based Distributed Training: This is the typical approach where a 

training job is split over multiple GPUs/nodes. Libraries like PyTorch Lightning, 

DeepSpeed, and Ray Train simplify doing data-parallel or model-parallel 

training on a cluster. For enterprises with several smaller GPU machines, using 

distributed data parallel (DDP) allows training a larger model than any single 

machine’s memory. Techniques like Fully Sharded Data Parallel (FSDP) partition 

not just data but model parameters and optimizer state across nodes, enabling 

training of models that wouldn’t fit otherwise. While distributed training has 

overhead (communication costs, engineering complexity), it can harness a pool 

of mid-range hardware to achieve something approximating a high-end system. 

As an example, if you have 10 machines each with an 8GB GPU, you could train a 

10x larger model by sharding it across them (with careful synchronization). This 

is often how academic labs tackle LLMs with limited budget – by efficiently 

using a handful of GPUs with software tricks.​

 

2.​ PETALS & Volunteer Computing: A novel development is decentralized 

inference/training networks like PETALS. Petals uses a peer-to-peer swarm of 

volunteer hosts, each hosting part of an LLM’s layers, to collectively serve or 

even fine-tune the model. It’s akin to BitTorrent for LLMs: anyone can 

contribute some GPU memory, and in return, everyone can use the large model. 

Petals has successfully demonstrated running inference for 100+ billion 

parameter models over the internet 10× faster than offloading to disk. It 

achieves this through pipeline parallelism over network: a forward pass is split 

among hosts, and a distributed routing algorithm finds an efficient path. Fault 

tolerance is handled by replicating blocks and dynamically reconfiguring if a 

host drops. This approach is highly compelling for countries or groups that 

individually only have a few GPUs: together, they can form a virtual 

supercomputer. For instance, 50 volunteers with one 24GB GPU each could host a 
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50×24 = 1200 GB model in theory – well beyond any single participant’s ability. 

Petals also supports collaborative fine-tuning, meaning a community could 

fine-tune a model on a shared dataset by each doing a small part of the work, 

instead of one entity bearing it all.​

 

3.​ Hybrid Edge-Cloud Solutions: Another approach is splitting computation 

between local devices and cloud servers. For example, where an SLM runs at the 

client or edge level generating drafts thats verified at the client side using a 

reward model, and if the reward doesnt meet the accuracy of a larger model 

then the larger model is requested to create/verify the draft, any such edits are 

cached at the edge for future uses as well.This can reduce the cloud/server usage 

by upto 90% while ensuring the accuracy of the cloud model at the client/edge. 

In all, distributed and hybrid strategies enable scaling beyond local limitations. They 

demand smart orchestration, but a well-designed distributed training can turn a 

network of ordinary machines into a formidable LLM factory. Similarly, volunteer and 

federated approaches can democratize access by pooling resources of many actors to 

achieve what none could alone. 

12.4 Memory and Compute-Efficient Optimizers 

Optimizers are the algorithms that update model weights during training (SGD, Adam, 

etc.). The choice of optimizer affects not just model convergence but also memory and 

compute overhead. For LLMs, AdamW has been a standard, but it requires keeping two 

extra momentum tensors of the same size as the model (doubling memory) and 

performs many math operations per step. New optimizers aim to be lighter: 

1.​ Adafactor: Adafactor is a variant of Adam that reduces memory usage by not 

keeping a full second moment matrix for each weight; instead it factorizes the 

second-moment statistics into per-row and per-column vectors. This cuts 

memory substantially (especially for very large layers) and was used by Google 

to train T5 models. Adafactor in its basic form has no momentum, though later 

versions allow a memory-efficient momentum. It achieves nearly the same 

convergence as Adam on large-scale tasks with far less memory overhead. For 
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someone training a model at the edge of GPU memory, switching to Adafactor 

can make the difference between fitting or not fitting the model.​

 

2.​ Lion (EvoLved Sign Momentum): Lion is a recently introduced optimizer that 

was discovered through neural optimizer search. It’s essentially Adam but only 

uses the sign of the gradients with momentum for updates. The crucial aspect is 

that Lion only keeps momentum, dropping the second moment tracking of 

Adam. This means it uses roughly half the memory of Adam and also has 

simpler update computations (no bias-corrected variance). Empirical results 

showed Lion can slightly outperform Adam in quality while being more 

memory- and compute-efficient. It has been tested on vision and language 

models, and generally if one tunes learning rates appropriately, it converges 

similarly. The benefit for low-resource training is that you can train larger 

batches or models before running out of memory, and also potentially see faster 

step times due to fewer operations.​

 

3.​ Sophia, Apollo and Others: There’s a proliferation of optimizers (Sophia, 

AdaClamp, Shampoo, etc.) each with their pros/cons. Sophia for instance tries to 

approximate second-order information cheaply, which can converge in fewer 

steps (saving compute) albeit with some overhead per step. Apollo uses adaptive 

momentum. SGD with momentum is actually the most compute-efficient (least 

ops per step), but it’s been found to yield worse final performance in LLM 

training – one study noted that all adaptive optimizers (Adam, Lion, Adafactor, 

etc.) performed similarly and much better than plain SGD on language modeling 

Thus, completely dropping adaptivity to save compute is not wise. However, one 

insight from that study was that only certain parameters (like output layer and 

layer norms) truly need per-parameter learning rates; freezing learning rates for 

others didn’t hurt much. This suggests future optimizers might strategically 

apply adaptive logic to a subset of parameters and use simpler updates for the 

rest, getting the best of both worlds.​

 

4.​ Memory-Efficient Training Techniques: Beyond optimizers, there are training 

loop tricks to reduce memory: gradient checkpointing (trading recomputation 
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for memory), optimizer state sharding (as in ZeRO), and even offloading 

gradients to CPU if GPU memory is tight (slower but sometimes necessary). 

Researchers have also looked at activation sparsity – if a large portion of neurons 

are inactive (ReLU-like sparsity), one can skip gradient updates for them (this is 

in early stages for transformers though). Another approach is Online Subspace 

Training, where the idea is to restrict gradients to a lower-dimensional subspace 

at a time, reducing the number of variables being actively updated (thus 

reducing optimizer memory). Techniques like this effectively say: you don’t 

need to adjust all 100% of weights simultaneously, you can update a subset, 

offload the rest, and swap through them – potentially reducing memory and 

maybe even noise. 

In practice, a simple change like switching to 8-bit optimizers or Lion can give 

immediate memory savings. For a small team, that might let them run a 13B model 

fine-tune on a single 24GB GPU (which is possible with QLoRA + 8-bit optimizers), 

instead of needing 2-3 GPUs with the default Adam. Compute-efficient optimizers that 

converge faster (like reaching the same accuracy in 50% fewer steps) effectively halve 

the compute cost if they work as advertised, which is another huge win when every 

GPU-hour counts. 

12.5 Geopolitical and Infrastructure Risk Mitigation 

As countries and enterprises invest in AI, they face strategic decisions beyond just 

technical ones. This section discusses mitigating risks related to hardware supply, 

cloud dependency, and preserving sovereignty over AI capabilities. Key considerations 

include using heterogeneous hardware, maintaining national model repositories, 

avoiding over-reliance on hyperscalers, and weighing the benefits of owning vs. 

leasing infrastructure. 

Heterogeneous Hardware Strategies 

Relying on a single vendor or type of hardware can be risky. Supply chain disruptions, 

export controls, or price changes can stall an AI initiative. The prudent strategy is to 

design solutions that are hardware-agnostic and heterogeneous: 
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1.​ Multi-Vendor Support: Ensure that your LLM software stack (training code, 

inference servers) can run on NVIDIA, AMD, Intel, or even emerging AI chips 

with minimal friction. This might mean using frameworks like ONNX Runtime 

or PyTorch with oneAPI that can target multiple backends. By keeping 

flexibility, an organization can pivot if, say, NVIDIA GPUs become hard to get or 

expensive. We see this thinking in the Chinese AI community, where U.S. export 

restrictions on high-end GPUs have prompted investment in domestic 

accelerators (e.g. Huawei Ascend, Alibaba Hanguang). Their LLM 

implementations are being ported to those platforms. Western companies 

similarly might want at least a proof-of-concept running on AMD Instinct GPUs 

or Intel GPUs to avoid a monopoly-induced risk.​

 

2.​ Older Hardware and Mixed Clusters: Not everyone can buy new GPUs at will. 

But perhaps one has a cluster of older V100s or even TPUs. Using them 

effectively is part of heterogeneous strategy. Techniques like model slicing can 

allocate different layers of a model to different hardware types based on their 

strengths. For instance, an attention layer might run fine on a CPU if it’s small, 

while big matrix multiplies go to a GPU. If bandwidth allows, mixing CPU and 

GPU in a training job (pipelines, offloading) can increase utilization of all 

resources. While not ideal, this can be a bridge solution in resource-limited 

environments. The risk of heterogeneous setups is software complexity – 

however, new orchestration tools and ML compilers (like TVM, TensorRT with 

fallbacks) are making it easier.​

 

3.​ Federated and Collaborative Training: From a geopolitical standpoint, if data 

cannot leave a country due to privacy (think EU’s GDPR or a nation’s data 

sovereignty laws), one can bring compute to the data via federated learning. For 

example, hospitals in different regions might each train the model on local data 

and only share model updates (not raw data) with a central aggregator. This 

mitigates risk of data exposure and can leverage distributed data sources 

without a single data center. The flip side is increased communication cost and 

complexity. Still, for certain applications (like medical LLMs across borders), this 

is an attractive, risk-aware approach. 
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12.6 National AI Model Repositories and Ecosystem 

Building 

A key part of AI readiness for a country is having control and access to models and tools. 

Relying solely on foreign APIs or closed models can be a strategic vulnerability. Thus, 

we see moves towards national AI model catalogues and open ecosystems: 

1.​ Hugging Face as a Global Model Hub: The rise of Hugging Face’s Transformers 

Hub has provided a centralized place to share models (over 100,000 models as of 

2025). Many governments and institutions actively use it. However, it is a 

commercial entity based in the U.S./France; some nations may prefer hosting 

their own repository for critical models (especially if internet access is an issue 

or they want curation). The concept of a national model catalogue is to have an 

official repository (perhaps run by a government lab or consortium) where 

validated models (and possibly domain-specific ones, like for healthcare or 

education) are stored and made available to domestic companies. China’s 

ModelScope, backed by Alibaba, is an example of this approach: it’s a platform 

hosting many AI models including LLMs, with an eye towards the Chinese 

developer community and compliance with local regulations.​

 

2.​ Model Zoos and Adapter Repositories: Beyond full models, the sharing of 

fine-tuning components (like LoRA adapters or prompts) is important for 

collaboration. Communities have created things like AdapterHub (for sharing 

adapter modules for various tasks). Encouraging a culture of sharing these 

“building blocks” can accelerate progress nationwide. If one university 

fine-tunes an adapter for a local language, they can publish it for others to plug 

into the base model. This avoids duplicate work. Policymakers could incentivize 

such sharing (e.g. require that publicly funded AI projects release their 

models/adapters to the national repository).​

 

3.​ Data and Tooling Support: A model is only as good as its training data and 

tools. National efforts should also include curated datasets (like a national 

corpus including government documents, literature, etc., cleaned and prepared 
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for training) and investment in open-source tooling (frameworks, libraries) that 

locals can use without legal or cost barriers. For example, the Indian 

government’s Bhashini initiative is creating translation datasets and models for 

Indian languages, hosted for public use. This mitigates the risk of Indian tech 

being stuck with only English-proficient models or paying for expensive 

translation APIs.​

 

By cultivating a robust internal AI ecosystem – models, data, skills – a country ensures 

it can adopt AI on its own terms and continue progress even if external access is cut off 

or becomes too costly. It also reduces brain drain, as local AI talent sees that they can do 

cutting-edge work at home with these shared resources. 

12.7 Hyperscaler and OEM Dependency Risk 
mitigation with hardware selection methodologies 
Hyperscalers (the big cloud providers: Amazon AWS, Microsoft Azure, Google Cloud) 

offer attractive on-demand compute for AI, but over-reliance on them has downsides: 

1.​ Cost and Lock-in: Cloud is essentially renting. For sporadic or initial 

experiments, it’s great because you avoid capital expenditure. But for sustained 

workloads, the costs can dwarf owning hardware. Estimates have shown that 

training large models on cloud can be 2× or more the cost of on-premise over 

time. Cloud providers also have egress fees (getting your data/model out) and 

you might build your stack around their proprietary services, making it hard to 

switch – lock-in. If a hyperscaler changes their pricing or terms (or faces 

outages), your project could be disrupted. To mitigate this, some organizations 

adopt a multi-cloud strategy (spreading work across AWS/Azure/GCP to avoid 

single-provider risk) or design portable workflows (e.g. using Kubernetes or 

Terraform so things can be moved). However, multi-cloud can be complex and 

you might lose volume discounts.​

 

2.​ Geopolitical Risks: Using foreign cloud providers may raise sovereignty issues. 

E.g., EU regulators worry about sensitive data being processed by U.S. companies 
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(hence the push for “sovereign cloud” solutions that keep data in-country). If 

relations sour or export rules shift, a cloud provider could theoretically restrict 

service to certain users or regions. This is not a purely hypothetical scenario – 

we’ve seen instances of software access being revoked due to sanctions. Owning 

at least part of the inference infrastructure (for critical systems) ensures 

continuity under various circumstances.​

 

3.​ Hardware OEM Dependency: The majority of advanced AI runs on NVIDIA 

GPUs. This concentration poses a risk: if NVIDIA cannot deliver chips (due to 

supply chain or export restrictions), it bottlenecks AI progress. We already see 

the U.S. restricting top-tier NVIDIA GPUs to certain countries. One mitigation is 

stockpiling (some firms are literally buying and hoarding years’ worth of GPUs 

when they can). Another is nurturing alternative hardware ecosystems: AMD’s 

MI250/MI300 GPUs, FPGA-based accelerators, or indigenous chip development 

(like Europe’s EPI or India’s upcoming AI chips). Governments might give grants 

or form partnerships to ensure they have at least one home-grown option for AI 

computing – much like how some countries ensure they can build their own 

supercomputers independent of foreign tech. 

A balanced approach is prudent: use hyperscalers for elasticity and when trying things 

out, but for core long-term workloads, consider investing in owned infrastructure. And 

avoid betting everything on one vendor’s roadmap. 

Owning Infrastructure vs. Leasing (Cloud) 

This is an age-old debate with new twists in the LLM era. Owning means buying 

servers/GPUs and running them (on-premise or in co-location), whereas leasing means 

using cloud or HPC centers on rental basis. 

Benefits of Owning: 

1.​ Lower Long-term Cost: If utilization is high (e.g. training models or serving 

inference 24/7), owning is generally cheaper. A Deloitte analysis found on-prem 

HPC could be ~50% the cost of equivalent cloud hours when hardware is 

well-utilized. Essentially, you pay a fixed cost up front, then depreciation, but 
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you’re not paying the cloud’s premium and profit margin. Organizations like 

Meta, Google always build their own for this reason at scale.​

 

2.​ Control and Customization: When you own hardware, you can optimize it 

specifically for your workloads (choose specialized interconnects, tune cooling, 

even modify hardware). You’re not beholden to cloud configurations. You also 

control scheduling – no surprise interruptions for maintenance or noisy 

neighbors on shared cloud nodes. For enterprises that need predictable 

performance (financial models, etc.), this control is valuable.​

 

3.​ Data Governance: Keeping everything on-prem means data doesn’t leave your 

facility. For highly sensitive data, this is non-negotiable. Some sectors (defense, 

healthcare) often mandate on-prem or approved private cloud only.​

 

4.​ Strategic Independence: Nationally, having sovereign compute (like a 

state-funded supercomputing facility) ensures that academia and industry have 

access to AI compute even if external services become limited. Countries like 

France have the Jean Zay supercomputer which was used to train the Bloom 

model – showing how national infrastructure can produce globally relevant 

outcomes. 

Benefits of Leasing (Cloud): 

1.​ No CapEx and Quick Scaling: You avoid the huge upfront cost of buying, and can 

scale up and down quickly. This is great for startups or research groups who 

occasionally need a burst of 100 GPUs for a week but then could go idle – 

owning those 100 GPUs to use rarely would be wasteful, whereas cloud you just 

pay for that week.​

 

2.​ Maintenance and Updates: The cloud provider manages hardware failures, 

upgrades to new GPU generations, etc. If a GPU dies, it’s their problem to replace 

it. On-prem, you need an ops team to handle this. Cloud also provides easy 

access to a variety of hardware (TPUs, latest GPUs immediately, etc.), while if you 
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bought GPUs, you might be stuck with last-gen until you can afford new ones.​

 

3.​ Global Availability: Cloud data centers are worldwide, so you can run compute 

close to where your users are or duplicate across regions for resiliency. An 

on-prem data center is usually one location (with maybe a backup site) – harder 

to achieve that geo-redundancy on your own unless you’re big. 

Hybrid: Many larger organizations choose a hybrid model – keep a baseline on-prem 

capacity for steady workloads, burst to cloud for spikes. This can yield cost savings 

while retaining flexibility. For example, a company might train models on-prem but do 

hyperparameter sweeps or short-term experiments on cloud VMs to not clog their own 

cluster. 

From a risk perspective, owning infrastructure insulates you from external shocks like 

sudden cloud price hikes, data transfer restrictions, or geopolitical embargoes. 

However, it requires capital expenditure and know-how to operate effectively. A nation 

might invest in a national AI Supercomputing Center (like how some have petaflop 

supercomputers for science) to support domestic AI needs – effectively acting as a 

private cloud for its citizens. 

 
Enterprises and countries should evaluate their steady-state compute needs vs. 

peak needs, budget constraints, data sensitivity, and choose an infrastructure 

strategy that hedges risks accordingly. For mission-critical AI (defining 

products or national projects), owning core infrastructure is often 

recommended for the assurance it provides, whereas cloud can supplement for 

non-critical or variable demands. 

12.8 Resource-Aware Model Architectures 

Designing models and training schemes that inherently consider limited data and 

compute is crucial for inclusive AI development. In this section, we discuss approaches 
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for localized model adaptation, preventing catastrophic forgetting when expanding a 

model’s knowledge, and architectures conducive to low-data, multilingual scenarios. 

Localized Model Adaptation for Diverse Cultures & Low-Resource 

Languages 

One size does not fit all in language models. Countries with multiple languages or 

distinct cultural contexts face the challenge of adapting LLMs that were often 

pretrained predominantly on English and other high-resource languages. 

Resource-aware adaptation means using the data you have efficiently: 

1.​ Multilingual Joint Training: If data for each individual low-resource language 

is scarce, training a single model on many languages together can help. The 

model learns a shared representation that transfers knowledge between 

languages (e.g., it might learn a concept in English and align it with the word in 

Swahili if given some parallel data). Models like mBERT, XLM and mT5 followed 

this approach, allowing over a hundred languages to be handled by one model. 

For LLMs, the same idea applies – mix languages in pretraining. The catch is that 

model capacity gets divided among languages, so very low-resource ones might 

still not get enough relative share. A remedy is to up-sample the low-resource 

language data during training and/or add language-specific tokens that help the 

model identify and separate languages. The BigScience project did this with 

Bloom, including 46 natural languages and 13 programming languages in 

training, and specifically making sure “long tail” languages (like Lao, Maltese, 

etc.) were repeated more times so the model sees them sufficiently.​

 

2.​ Culturally Diverse Data: Cultural knowledge is not just language; it’s also about 

idioms, social norms, local facts. A model pretrained on Western internet might 

not know much about folklore or popular culture in another country. 

Incorporating local texts (newspapers, novels, social media from that country) 

during training or via continuous pretraining can give the model more 

culturally relevant knowledge. Moreover, fine-tuning on dialogue data that 

reflects local conversational styles can make the AI’s responses feel more 
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natural to users in that culture.​

 

3.​ Domain Adaptation on Sparse Data: In some cases, even domain data is limited 

(e.g. a specialized scientific field). Techniques like few-shot learning or data 

augmentation can help. For example, if you only have 1,000 legal Q&A pairs, you 

might prompt a larger LLM to generate more synthetic Q&A in that domain 

(similar to how Alpaca generated its data). Knowledge distillation from a model 

that has seen more (maybe a teacher model that can access a bigger corpus) into 

a smaller model is another tactic. Essentially, you use any external knowledge 

source to amplify the effect of your small dataset. 

12.9 Using Adapters to Prevent Catastrophic 

Forgetting 

We’ve touched on adapters for efficiency, but they also shine for incremental learning. 

Catastrophic forgetting is when a model fine-tuned on new data loses performance on 

its original capabilities or knowledge. Adapters offer a solution: isolate new knowledge 

in dedicated parameters. 

Imagine you have a base LLM that’s good at general tasks. Now you want to teach it a 

new skill (say, writing poetry) or update it with this year’s events. If you fine-tune the 

whole model on the new data, it might overwrite weights that were important for other 

tasks (suddenly it might get worse at factual Q&A while becoming poetic). Instead, you 

attach a fresh adapter (or LoRA module) and train that on the new data, keeping the 

original weights frozen. The adapter learns the new skill; if it’s small relative to the 

model, it won’t interfere much with existing functions. At inference, the model with 

adapter can do the new skill, but if needed, you could also disable/unplug the adapter to 

get back the original behavior. 

This approach has been validated in research: one study on continual learning found 

that using separate adapters for each new task greatly mitigated forgetting, since the 

core model wasn’t being rewritten. Some techniques even enable conditional routing: 

e.g., a task token can activate the relevant adapter for the task. Google’s PALM used a 
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form of this for multitask training, and there’s work on learning routing to appropriate 

expert adapters given the input. 

Additionally, soft modularization methods like SLIM (Soft LoRA Injection Mixture) allow 

a model to blend between multiple LoRA adapters and the identity (no change) 

dynamically. SLIM showed that by gating the influence of LoRA on a per-input basis, 

the model could retain general ability and only apply the specialized weights when 

appropriate, further reducing interference between tasks. 

For multilingual models, language-specific adapters have been used to add a new 

language without hurting existing ones: train a new adapter on that language, keep 

others frozen. Facebook’s LASER and similar projects successfully added support for 

languages this way. When generating, the model uses the adapter corresponding to the 

language it’s outputting in. 

 
Adapters act as “memory compartments” – each new knowledge area gets its 

own compartment, so it doesn’t overwrite the others. This strategy is extremely 

useful for enterprises updating models with new data continuously (like a 

search engine’s LLM that learns from new documents daily) or for joint models 

that serve many tasks. 

12.10 Architectures for Low-Data Alignment and 

Multilinguality 

Beyond training tricks, certain architectural designs inherently facilitate doing more 

with less data: 

1.​ Instruction Tuning with Mixture-of-Tasks: Instead of needing a large dataset 

for every distinct instruction/task, models are often jointly tuned on a mixture of 

many tasks’ small datasets. This approach, used in T0 and FLAN, aligns the 

model to the “format” of following instructions generally. The model then can 

generalize to new unseen tasks (zero-shot) surprisingly well. What this means 
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for low-resource settings is that you don’t necessarily need in-domain data for 

every capability – you can leverage public multitask data to create a broadly 

instruction-following model, then just lightly tweak it to your specific domain. 

This massively reduces data requirement for alignment. OpenAI’s usage of 

instruction tuning on GPT-3 (to get text-davinci-002) is a case in point: they 

likely used a wide array of instruction examples (from summarization to coding 

to QA) to make a single model adaptable to anything.​

 

2.​ Multi-Modal, One-Model Approaches: For countries that have diverse data 

modalities but not a lot in each (e.g., some text, some speech transcripts, some 

images with captions in a local language), a single multi-modal model that 

learns from all can be beneficial. Recent M-LLMs like LLaVA and PaLI-X 

combine vision and language, and some also combine speech. A multi-modal 

model can use supervision across modalities to strengthen its language 

understanding. For instance, an image of a local landmark with a caption 

teaches the model about that landmark in a way that pure text might not. 

Multi-modal training can act as an augmented data source – e.g. if you don’t 

have text about a cultural concept, maybe you have pictures and descriptions of 

it, which then inform the language side of the model. This is especially relevant 

in areas where oral or visual culture is richer than written text.​

 

3.​ Retrieval-Augmented Models: One clever way to handle low internal 

knowledge is not to put everything into the model’s parameters. 

Retrieval-Augmented Generation (RAG) architectures equip the model with a 

retriever that can fetch relevant documents from an external database (which 

could be as simple as Wikipedia or a curated document set). Then the model 

conditions on those retrieved facts to produce the answer. This means the 

model itself can be smaller and trained on less, as long as it knows how to read 

retrieved context. For local use cases, one could maintain a local knowledge base 

(for example, government documents, local news) and let the model search that 

when needed. Instead of pretraining the LLM on all that data (expensive), you 

just need a solid retriever (which can be built using smaller models or even 

keyword search) and some fine-tuning of the LLM to incorporate retrieved info. 

 
84 



                                                                                                                                            

This setup is data-efficient because you don’t require the LLM to memorize 

everything – it can look up details on the fly. It’s like giving the model a 

bookshelf so it doesn’t have to hold every book word-for-word in its brain.​

 

4.​ Sparse Activation Models: Mentioned earlier, mixture-of-experts (MoE) 

models have subsets of weights active per input. This inherently allows training 

each “expert” on the data pertinent to it (for example, an expert for each 

language, or each topic). In Google’s recent Switch-C and GLaM models, they 

had experts that clearly specialized in certain languages or genres. Because each 

token only trains one expert, the effective data needed per expert is lower (it’s 

not seeing irrelevant data). If some experts are designated for low-resource 

languages, they can focus on those and not be diluted by high-resource 

language data. The router ensures they only fire for the appropriate inputs. This 

targeted learning is an architectural way to cope with data imbalance.​

 

5.​ Feedback and Reward Models for Low-Data Alignment: When human 

examples are scarce, training a reward model on even a tiny set of human 

preferences and then using it to do automated reward optimization (like 

through RLAIF – Reinforcement Learning from AI Feedback) can stretch a few 

human data points much further. Facebook’s HH- series of models (like 

HH-RLHF) showed that you can first fine-tune on some general instructions, 

then use a handful of human preference data to train a reward model that 

captures, say, “avoid toxic replies”, and then use that reward model to guide 

generations. Essentially the reward model amplifies the impact of limited 

human feedback. Direct Preference Optimization (DPO) similarly can work with 

small comparison datasets to align a model without a full RL loop. For a 

policymaker wanting an aligned model but not having the budget for millions 

of human annotations, focusing on training a reliable reward model on a 

smaller curated set, and letting it drive self-training of the LLM, is a viable 

strategy. 
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13. Efficient Inference Systems for 
GenAI in Resource-Constrained 
Environments 
Developing countries often face resource constraints that make deploying massive 

Generative AI models challenging. Recent open-source research and frameworks have 

focused on  efficient inference  techniques to enable large-scale GenAI deployment on 

limited GPU/CPU infrastructure. This survey covers seven major areas of advancement: 

efficient model architectures, split inferencing, collaborative decoding, 

distributed/federated inference, decentralized multi-model approaches with prompt 

routing, the strategic use of Small Language Models (SLMs), and test-time scaling 

techniques. Each area is crucial for maximizing tokens-per-dollar, minimizing energy 

(Watts/TFLOPs) and memory bandwidth (MBW) use, and reducing latency in 

low-resource settings. 

13.1 Efficient Model Architectures 

State-of-the-art model architectures are being redesigned for efficiency. These 

approaches trade off some complexity or precision for dramatic gains in speed, 

memory, and energy usage: 

BitNet (1-bit Transformers):  BitNet is an extreme quantization architecture where 

weights are 1-bit and activations are low-bit, trained from scratch to preserve accuracy. 

Microsoft’s open BitNet models (e.g. BitNet b1.58) achieve remarkable efficiency – 

bitnet.cpp runs a 100B-parameter BitNet on a single CPU at  5–7 tokens/s , with  

2.4×–6.2× speedups  and  \~72–82% less energy  on x86 CPUs versus FP16 models. By 

drastically reducing memory bandwidth needs, BitNet improves tokens per dollar and 

watt, showing that aggressive quantization can maintain performance with far lower 

compute cost. 

Mamba (Linear-Time SSM Architecture):  Mamba replaces self-attention with a  

Selective State-Space Model (SSM)  that runs in linear time, eliminating the quadratic 

scaling of transformers. A pure Mamba model enjoys  5× higher throughput  than a 

 
86 



                                                                                                                                            

transformer and constant memory usage (no growing KV cache). Notably, a 3B Mamba 

matches the accuracy of a 6B Transformer. Hybrid LLMs interleaving Mamba and 

transformer layers (e.g.  Jamba ,  Samba ) further combine strengths. The open 9B 

Bamba model (Hybrid Mamba2) demonstrates  2.5× throughput  and  2× lower latency  

than a standard 8B transformer at inference. These hybrid LLMs alleviate memory 

bottlenecks (constant-size caches) while retaining accuracy, making long-context 

inference more feasible on limited hardware. 

Liquid Neural Networks: Liquid Neural Networks (LNNs) are inspired by dynamical 

systems, with neurons described by continuous-time equations that adapt to input 

streams. They excel in low-resource scenarios by being  highly efficient and robust . 

For example, an LNN with only 19 neurons achieved parity on a task that normally 

needed 100k conventional neurons – an enormous reduction in model size. LNNs can 

also dynamically adjust to changing data, reducing retraining needs. Critically, LNN 

models operate on edge devices with an order-of-magnitude lower power 

consumption than transformers. Early results show 10× lower power usage in some 

cases, with LNN-based “Liquid” foundation models delivering state-of-the-art class 

performance with a smaller memory footprint. This makes LNNs promising for 

energy-efficient AI in regions with limited power or hardware. 

Multi-Head Linear Attention (MLA): Transformers with linear-time attention 

drastically cut complexity.  MLA  refers to techniques that make self-attention linear in 

sequence length, often by kernel feature maps or low-rank approximations. Recent 

implementations like FlashMLA focus on  memory bandwidth efficiency  during 

autoregressive decoding. By managing KV caches in blocks and tiling computation in 

GPU shared memory, FlashMLA avoids memory stalls and serves multiple requests 

efficiently. In practice, linear attention methods (e.g. TransMLA) have shown 

expressive power on par with full attention while scaling to long sequences more 

gracefully. This translates to lower latency per token on long inputs, ideal for 

low-bandwidth environments. 

Multiplication-Free Attention:  Removing expensive matrix multiplications further 

improves efficiency, especially on CPUs. NoMAD-Attention introduces an attention 

algorithm that replaces multiply-add operations with ultra-fast  in-register table 

lookups  on modern CPUs. This technique maintained output quality while speeding 
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up a 4-bit quantized LLaMA-7B by up to  2×  at 16k context. Likewise, ShiftAddLLM 

uses bitwise shifts and additions instead of multiplications in attention and 

feedforward layers. The result is over  80% reduction in memory and energy usage  

versus the original model, at comparable accuracy to aggressive 2–3 bit quantization. 

These multiplication-free mechanisms improve W/TFLOP efficiency by exploiting 

cheaper operations, which is valuable for deployment on CPUs and low-power devices 

common in developing regions. 

Overall, these architectural innovations (quantization-aware models, state-space and 

liquid networks, efficient attention, etc.) dramatically improve tokens per second per 

watt. For instance, BitNet’s 1-bit design tackles the memory bandwidth wall, and 

Mamba-based hybrids eliminate context-length penalties. By evaluating them on 

metrics like energy per token or latency, researchers have shown  5×–10× gains in 

throughput and large drops in energy use . Such efficient open-source architectures are 

enabling local inference of models previously considered infeasible outside major data 

centers. 

13.2 Split Inferencing (Edge–Cloud Collaboration) 

When devices have limited capacity,  split inference  techniques partition the workload 

between the client (edge) and server (cloud). This collaborative approach minimizes 

on-device computation while reducing server load and preserving privacy: 

Layer/Stage Partitioning:  One strategy is to run the early layers of a model on the 

edge device and send the intermediate activations to a server that completes the 

forward pass. This reduces data transmission (only features, not raw data, are sent) and 

balances compute. For example, SplitNN paradigms and recent systems like  SplitLLM  

use dynamic programming to find an optimal split point given the network and device 

speeds. Experiments show a properly chosen split can halve server workload with 

negligible loss in quality, improving overall throughput of the system. The challenge is 

the communication overhead of sending activations, which must be offset by the 

computation saved. 

Tiered Collaborative Decoding:  Beyond a simple one-time split, some frameworks 

employ a  tiered decoding pipeline . Jupiter (2025) is a system for multi-edge 
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collaboration in generative LLM inference that separates the prefill phase and 

autoregressive decoding phase across tiers. In Jupiter, a flexible pipeline parallelism 

loads the initial prompt across several edge devices (or edge+cloud) for the heavy first 

forward pass, then uses an outline-based pipeline (with speculative decoding) for the 

token-by-token generation. This tiered approach yielded up to  26× lower end-to-end 

latency  compared to single-device inference. Essentially, easy portions of the 

computation are distributed broadly (many small devices), and the final assembly is 

done in a coordinated way, maximizing throughput without overloading any one node. 

Client-Side Draft, Server Verification:  Another collaborative pattern is having the 

edge device generate a draft output using a small local model, and then the server’s 

large model validates or corrects it. This is a form of split computation across two 

passes. It balances compute (most tokens proposed by the cheap edge model) and 

bandwidth (only a draft and minimal feedback cross the network). It also keeps the 

user’s prompt and draft mostly local, addressing privacy. Approaches like  Hybrid 

SLM-LLM inference  implement this: an on-device SLM produces tokens, and a cloud 

LLM intervenes only when needed to maintain quality. The hybrid edge-cloud method 

by Hao et al. achieved  LLM-level accuracy with only 25% of the usual LLM compute 

cost  by using a TinyLlama SLM for the bulk of work and calling the cloud LLM 

sparingly. This tiered decoding ensures state-of-the-art results while drastically 

cutting inference cost – a boon for regions with sparse GPU resources. 

Split inferencing offers privacy and efficiency: user data can be processed locally up 

to a point (sensitive feature extraction on-device), and only non-sensitive 

representations are sent to powerful servers. It also reduces latency by parallelizing 

work. The key is careful scheduling to avoid communication becoming a bottleneck. 

Recent research addresses this with compression of intermediate data and 

asynchronous pipelines (as seen in Jupiter’s design). For developing countries with 

patchy connectivity and limited hardware, split inference provides a practical balance 

between  local processing (for data locality)  and  remote processing (for heavy lifting) , 

enabling GenAI services that are both fast and compliant with data privacy needs. 

13.3 Collaborative Decoding Strategies 

Beyond static splitting,  collaborative decoding  techniques allow multiple models to 
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work together during generation to speed up inference and reduce cost: 

Speculative Decoding: This method uses a faster draft model to generate several 

tokens ahead, then has the large model verify them in one go. If the large model agrees 

on the draft tokens, they are accepted, otherwise it falls back to normal generation for 

that step. Google’s speculative decoding showed  2–3× speedups  with no loss in output 

quality, since the final distribution is identical to the original LLM’s. In effect, the large 

model “skips” computation by trusting the small model’s speculation most of the time. 

This reduces latency and cost per output by requiring fewer sequential calls to the big 

model. Speculative decoding has been widely adopted (e.g. in Google’s production 

systems) because it guarantees the same results as standard decoding while reducing 

inference time by over 2×. 

EAGLE: Extrapolation Algorithm for Greater LLM Efficiency (EAGLE) is a 

state-of-the-art speculative decoding framework. It extrapolates internal features of 

the LLM’s decoder to predict future tokens efficiently. EAGLE was found to be the  

fastest known decoding method  (as of 2024), achieving ~ 3× faster  generation than 

vanilla decoding and outperforming earlier methods like Lookahead and Medusa. 

Notably, EAGLE sped up a 13B model’s decoding by 3× while provably preserving the 

same output distribution. Its successor EAGLE-2 further boosts speed (4× faster than 

normal decoding) by using dynamic draft trees that adjust to the confidence of token 

predictions. These techniques show that collaboration within an LLM’s layers (by 

predicting high-level features) can yield big inference gains. 

Medusa:  Medusa takes a different approach by  adding multiple decoding heads  to a 

single LLM, allowing it to predict several tokens in parallel. Instead of a separate draft 

model, the LLM itself is augmented (via fine-tuning) with extra output heads that 

jump ahead in the sequence. During generation, Medusa’s heads propose multiple next 

tokens (forming a tree of possibilities) and a lightweight procedure then selects the 

longest valid token sequence from those candidates. This effectively parallelizes 

autoregression. Medusa is simpler to deploy (no second model needed) and only the 

new heads are trained (a parameter-efficient fine-tune). The latest results show  

2.2–3.6× speedups  on Vicuna and other models. For example, Medusa-1 achieved ~2× 

faster generation for Vicuna-7B with batch size 1. Medusa’s approach demonstrates that 

even  single models can “collaborate with themselves”  by internally branching out 
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multiple token predictions – democratizing fast decoding without complex system 

orchestration. 

SLM Primary + LLM Verification:  In scenarios aiming for maximum cost savings, a 

small language model can do most of the work and a large model only verifies or 

corrects outputs. This idea is seen in  Coarse-to-Fine decoding  or frameworks like 

CoSine (Collaborative Speculative Inference). CoSine uses multiple specialized SSMs 

(small speculative models) as drafters that generate candidate tokens, which are then 

verified in parallel by the LLM. By decoupling drafting and checking across distributed 

nodes, and routing each query to the most “expert” small model, it achieves higher 

acceptance rates and efficiency. CoSine improved inference throughput by  32.5%  and 

latency by  23%  over standard speculative decoding in a multi-node setup. Similarly, 

the Hybrid SLM-LLM edge-cloud method described earlier (TinyLlama + cloud GPT) 

can be viewed as collaborative decoding: the SLM generates tokens and only uncertain 

cases invoke the LLM. These approaches prove that letting a cheaper model drive the 

generation and a powerful model oversee it can maintain quality while significantly 

cutting inference cost – an attractive strategy when GPU hours are scarce. 

 
Collaborative decoding methods exploit redundancy in generation: a smaller 

model (or extra heads) can guess the next tokens much faster, and the big model 

can confirm them in one pass instead of generating each token itself. The 

benefits are substantial – speculative decoding and its variants often double or 

triple decoding speed, which translates directly into lower inference latency and 

cost per query. This is especially beneficial in resource-constrained 

deployments where large models are slow or expensive to run – by pairing 

them with efficient helpers, one can get  LLM-level output at a fraction of the 

time and compute . 

 

13.4 Distributed and Federated Inferencing 

Decentralizing the load across many modest devices is another avenue to enable GenAI 
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at scale without a single supercomputer.  Distributed inference  frameworks and 

federated setups harness aggregate compute while respecting data locality: 

Petals (BitTorrent-style Inference): Petals is an open-source system that lets anyone 

run parts of a large model and join a peer-to-peer network for serving inference. It 

breaks the model into layers (transformer blocks) and distributes them across 

participants’ machines. At inference, the input passes through a sequence of peers 

hosting successive layers – analogous to a model-parallel pipeline over the internet. 

Remarkably, Petals can serve models with up to  176B parameters (BLOOM)  on 

consumer GPUs at about  1 token/second . This outperforms offloading to disk and 

approaches interactive speeds. Petals also supports fine-tuning by exposing 

transformer block outputs to attach LoRA adapters. The benefit is decentralization: no 

single node needs to hold the entire model or dataset, aligning with federated 

principles. Petals’ collaborative approach effectively creates a volunteer-driven 

inference cluster that scales out model serving across many nodes. It demonstrates 

that developing countries could pool existing low-end GPUs to collectively host an 

LLM that none could run alone. 

Federated / Privacy-Preserving Inference:  In sensitive applications,  federated 

inference  ensures data stays on the local device. Techniques include secure model 

aggregation (each client runs the model on their data and only shares anonymized 

outputs or gradients) and split learning with encryption for intermediate 

transmissions. For instance, a health NLP application might run an SLM on a hospital’s 

server on-site, then send encoded representations to a central server running the 

heavy LLM part – this way raw patient data never leaves the hospital. Homomorphic 

encryption can further secure any offloaded computation, albeit with added latency. 

Another angle is  model encryption : distributing encrypted model weights to edge 

devices that decrypt and run locally (useful if model IP needs protection but data is 

local). While still an emerging area, frameworks like FedML are extending federated 

learning to LLM inference, and research shows it’s feasible to update LLMs on local 

data and periodically sync small weight updates – keeping data local and only sharing 

model improvements. 

CPU/GPU Decentralized Clusters:  Even without special software, communities have 

experimented with coordinating many CPU-only machines to serve LLMs. One 
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example is using Ray or MPI to shard the model across cheap cloud instances or 

donated computers. The key bottleneck is interconnect bandwidth; projects like Petals 

address this with compression and scheduling to hide network latencies. Another 

project,  EdgeShard , specifically looked at collaborative edge computing for LLMs, 

where portions of the model are hosted on a cluster of edge devices (Raspberry Pi’s, 

smartphones, etc.) and the rest on a server. They found that smart partitioning and 

parallel execution can make such setups competitive with single-node inference, 

especially for large sequence inputs that can be split. These distributed setups 

inherently improve resilience (no single point of failure) and allow scaling out with 

commodity hardware, which is cost-effective in many regions. 

In all, distributed and federated inference techniques emphasize  joining forces  – 

whether it’s individuals pooling hardware via Petals or organizations keeping data 

local and only sharing learned representations. For developing regions, this means an 

LLM-driven service could be powered by a network of ordinary computers (even across 

different cities) instead of an expensive centralized GPU farm. Additionally, by keeping 

computation close to data, they offer compliance with data sovereignty laws and 

latency benefits for local users. The trade-offs are in complexity and potential 

communication cost, but ongoing innovations (like efficient layer splitting and 

on-device optimization) are rapidly closing the gap, making  decentralized LLM 

serving  a viable reality. 

13.5 Decentralized LLMs and Prompt Routing 

Instead of one giant model, another approach is to use  multiple smaller models 

working together  to achieve high accuracy. These decentralized LLM frameworks 

often incorporate a  prompt routing  mechanism to dispatch queries to the best 

model(s) for the job: 

Prompt-to-Leaderboard (P2L):  Prompt-to-Leaderboard is a recent method that 

dynamically evaluates which model among a pool is most likely to excel on a given 

prompt. It trains a meta-model (P2L model) that takes a prompt and outputs a 

leaderboard ranking of models for that specific prompt. In deployment, the system can 

then route the prompt to the top-ranked model (or ensemble of models). This achieves  

per-prompt model specialization . Impressively, a P2L-powered router deployed on the  
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LMArena  benchmark outperformed every individual model, ranking #1 on the 

Chatbot Arena by selecting the optimal model for each query. By leveraging several 

SLMs (each of which might be fine-tuned in different domains or have different 

strengths), P2L ensures that, for example, a coding question goes to a code-specialized 

6B model, while a creative writing task goes to a dialogue-optimized 7B model. The net 

effect is an ensemble system that is both high-accuracy and compute-efficient: each 

prompt only runs on a small model (not a monolithic 70B), but the aggregate 

performance rivals very large models because of this targeted selection. 

Mixture-of-Experts & Model Routing:  The concept of routing prompts to different 

experts has antecedents in Mixture-of-Experts (MoE) models, but those typically route 

tokens within a single large model. Here we focus on external routing: having multiple 

independent models (which could all run on CPUs or small GPUs) and a coordinator 

deciding how to split the task. Some systems use  domain classifiers  or embeddings to 

choose an appropriate model. For instance, an architecture might include a language 

detector that routes the input to an SLM fluent in the detected language, or a task 

classifier that decides if the query is about finance, medicine, etc., and hands off to a 

model tuned in that field. This avoids loading an unnecessarily large general model. 

Research shows that ensembles of  specialized smaller models can exceed a general 

LLM’s performance  on a broad evaluation. DeepMind’s Chinchilla ensemble (12B × 4 

models) matched GPT-3.5 on certain tasks with lower total parameters. The key is that 

each model contributes where it’s strongest. Routing strategies include hard routing 

(one model handles the query) or soft voting (all relevant models generate an answer 

and a final module picks or merges them). 

Collaborative Generation (Token-Level Fusion):  A more tightly integrated approach 

allows multiple models to  interleave their generation at the token level . Recent work 

from MIT on CoLLM trains a base model to call upon other models mid-sentence. For 

example, a 7B model might generate an answer outline but whenever a factual detail is 

needed, it defers to a 34B knowledge model to fill in those tokens. In experiments, this 

token-level collaboration yielded joint systems that beat any individual model on 

cross-domain tasks. One learned pattern was  template filling  – the smaller model 

would lay out the answer format (leveraging its strength in following instructions), and 

insert calls to a larger model for complex subtasks like math or factual recall. This is 
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analogous to a team where a junior member does most of the writing but asks a senior 

expert for specific pieces. Such coordinated multi-LLM systems are complex but show 

the potential of micro-models on CPUs collaborating to emulate a much larger model. 

In practice, implementing this might involve a supervising program that manages 

multiple model instances and merges their outputs (ensuring consistency in the final 

text). 

The benefit of decentralized multi-model approaches is  flexibility and 

cost-effectiveness . Each small model can be deployed on affordable hardware and even 

fine-tuned independently on locally relevant data (e.g. a model tuned for Swahili 

language, another for legal text). A routing system or collaborative scheme then unites 

them to deliver strong overall performance. This also aligns with modularity: new 

specialist models can be added to the pool to improve certain capabilities without 

retraining a giant model from scratch. For regions with limited resources, it may be 

easier to obtain or train several 1–7B models (possibly on different machines or by 

different groups) than a single 70B model. Through prompt routing and ensemble 

techniques, these communities can still achieve  high accuracy AI services collectively , 

exemplifying the principle that “many small models can work together to solve big 

problems.” 

13.6 Strategic Use of SLMs Over LLMs 

In many common use cases, deploying a  Small Language Model (SLM)  is far more 

practical and can be surprisingly effective relative to a Large Language Model. SLMs 

(ranging from say 100M to 7B parameters) offer drastically lower resource 

requirements, and with fine-tuning they often  match or surpass larger models on 

specialized tasks . This is critical for developing countries where hardware is limited 

and inference costs must be minimal. 

Efficacy of SLMs on Common Tasks:  It has been observed that a smaller model 

fine-tuned on a domain can outperform a much larger general model on that domain. 

For example, a 770M-parameter DistilBERT fine-tuned for sentiment analysis can beat 

a 13B generic model in accuracy for that task, while being faster and lighter. Similarly, 

flan-tuned T5 or LLaMA models (≈3B–7B) achieve very strong results on translation, 

summarization, and Q&A when appropriately fine-tuned. One analysis noted that a 
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fine-tuned small model “can often outperform larger (more expensive) models” when 

the task is well-defined and data is available for tuning. In real deployments like 

chatbots for government services, an SLM of a few billion parameters fine-tuned on 

the target language and domain can provide excellent answers with a tiny fraction of 

the compute needed for GPT-class models. Crucially, these models can run on a single 

modest GPU or even CPU (with quantization), meaning areas with only basic 

computing infrastructure can still host AI services locally. 

Open-Source SLM Examples:  There is a rich ecosystem of open SLMs that are suitable 

for low-resource settings. Meta’s  LLaMA-2 7B  and its derivatives (e.g. Alpaca, 

Vicuna-7B) are often used as a starting point; when quantized to 4-bit integers, they 

can execute on consumer laptops.  TinyLlama  (1.1B) is another project explicitly 

focusing on pretraining a small model from scratch on extensive data, yielding 

surprisingly competent language understanding in a 1B-scale model. For multilingual 

needs, models like  Bloom 3B  or  XLM-R (0.5B)  are available and cover many languages 

of Africa, Asia, etc. These can be fine-tuned on local languages or dialects with low 

computational cost. We also see specialized SLMs like  MedAlpaca  (medical dialogue, 

~7B) or  LegalBERT  (110M) which, in their domain, significantly outperform baseline 

LLMs that haven’t seen that domain data. Such models underscore that bigger is not 

always better if the model is well-matched to the use case. 

Fine-Tuning and Adaptation on Minimal Hardware:  Techniques like  Low-Rank 

Adaptation (LoRA)  and other PEFT methods have made it feasible to fine-tune SLMs 

on as little as a single GPU (even a 12GB card) or aggregated low-cost instances. LoRA 

adapts only a small fraction of parameters, meaning one can, for instance, adapt a 7B 

model to a new task by training just 30 million parameters, greatly reducing memory 

and time. There have been demonstrations of fine-tuning a 6B model on a Raspberry 

Pi cluster and achieving good performance. Moreover,  quantization-aware training  

and distillation can further compress models – e.g. taking a 2B model and creating a 

distilled 300M version that runs on mobile. These approaches allow local researchers 

and developers to customize models for their community’s needs (e.g. a Swahili 

summarization model) without requiring cloud-scale compute. The end result is an 

SLM that is tailored, efficient, and private. 

Choosing SLMs over LLMs is often a trade-off between general ability and practical 
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deployability. In a constrained environment, the latter usually wins out – a slightly less 

sophisticated answer from a model that can actually be deployed is better than an ideal 

answer from an unusable model. Encouragingly, with good data and fine-tuning, the 

gap in quality can be very small. Users have found that for many routine applications 

(customer support bots, elementary education tutors, information lookup, etc.), a 

well-tuned 7B model provides an experience on par with a 70B model, at perhaps 

1/10th the runtime cost. Additionally, running entirely on local servers or devices 

avoids reliance on expensive internet connectivity and cloud APIs, which aligns with 

the self-reliance goals of many communities.  

 
Small models are the workhorses of resource-constrained AI, and strategic use 

of SLMs – boosted by fine-tuning and quantization – enables widespread 

GenAI adoption even outside tech-rich regions. 

 

13.7 SLM Test-Time and Inference-Time Scaling 

To further boost SLM performance to rival larger models, researchers are exploiting  

test-time (inference-time) computation  strategies – essentially making the model 

“think more” without changing its weights. These methods give small models an edge 

by using extra computation during inference selectively: 

Test-Time Ensembling and Self-Consistency:  One straightforward approach is to use 

ensembles or multiple decoding passes at inference and combine the results. For 

instance,  Self-Consistency decoding  generates multiple independent answers (via 

sampling different reasoning paths) and then uses majority voting or a scoring 

function to pick the best answer. This has been especially effective for math and 

reasoning problems: a 2.7B model, when asked to produce 10 different reasoning chains 

and then taking the most agreed-upon answer, can significantly improve accuracy – 

sometimes matching a 6B model that doesn’t use self-consistency. This is leveraging 

the idea that while a single pass of an SLM might make an error, the ensemble of its 

own outputs reduces variance. In general, test-time ensembling (running an SLM $N\$ 
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times) scales computation linearly with $N\$, but if $N\$ is small (e.g. 5 or 10) it may 

still be much cheaper than running a 10× larger model once, while yielding similar 

results. Researchers have noted diminishing returns after a point, but carefully chosen 

self-consistency can yield large gains in reasoning correctness without any model 

retraining. 

Inference-Time Iterative Refinement:  Another powerful idea is allowing the model to  

iteratively improve its output . Techniques like scratchpad or tree-of-thought 

prompting let an SLM generate a draft solution, then verify or critique it, and generate 

a refined solution, possibly repeating this loop. Essentially, the model spends more 

FLOPs per query by checking its work. A recent paradigm called  ReST  (Recurrently 

Self-Improve at Test-time) gives the model a chance to update its answer using a 

verifier model as feedback. It was found that allocating a fixed extra compute budget to 

an SLM in this way can outperform a much larger model: in a FLOPs-matched 

comparison, a smaller base model with test-time compute outperformed a model  14× 

larger  on certain prompts. This underscores that  “thinking longer” can substitute for 

“thinking bigger.”  For example, an SLM might use 4 passes to refine an answer (using 

as much total compute as a big model would in 1 pass) and end up more accurate than 

the big model. This is highly relevant to low-resource settings: rather than scaling up 

model size (which increases memory and hardware requirements), one can keep a 

smaller model but run it a bit longer on available hardware to boost quality when 

needed. 

Auto-Selectable Adapters (Dynamic Routing at Inference):  Building on the 

adapter-based fine-tuning in Section 6, researchers have created systems where  

multiple adapters  (each tuned for a different domain or task) are loaded into the model, 

and at inference an automated mechanism selects which adapter(s) to apply. One such 

framework is the Adapters Selector (AS). It trains a lightweight “middleman” network 

that looks at the input and decides, for example, “This looks like a legal question, 

activate the Legal adapter”. The selected LoRA adapter is then merged for that forward 

pass. This yields an on-the-fly multi-skill model without the overhead of a giant model 

that knows everything. In one experiment, a 770M base model with a suite of domain 

adapters and an adapter-selector outperformed a 7B model on a mix of domain tasks, 

using each adapter only when appropriate. Another work,  MeteoRA , explicitly aims for 
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autonomous LoRA selection during inference. These methods essentially scale capacity 

at inference by having specialized weights ready and choosing the right subset – 

analogous to having an expert on call. The result is a flexible system that can handle 

many tasks with SLM-level efficiency, because only a small portion of extra weights 

(the relevant adapter) is active per query. This is ideal when an edge server has to deal 

with various use cases: it can host, say, 10 small adapters (which is memory-feasible) 

covering different languages or functions, and activate them as needed to achieve 

quality comparable to a larger unified model. 

“Think More” Paradigm:  A philosophical shift in AI scaling, often termed test-time 

compute scaling, is emerging: instead of investing all resources in training ever larger 

models (parameter scaling), invest in mechanisms that allow models to use more 

computation per query intelligently. For small models, this is a great equalizer. As one 

article put it, “Train less, think more” – meaning even if you can’t train a gigantic 

model, you can get a lot of mileage by making a modest model  cognitively robust  

through inference-time strategies (self-reflection, planning steps, verifier loops, etc.). 

This area is rapidly developing. For instance, self-verification techniques have an SLM 

generate not just an answer but also a confidence or rationale, which is used to decide if 

it should try again or defer to another model. All these fall under giving the model 

additional opportunities at inference to get it right, thereby amplifying its effective 

performance. 

In practice, many of these test-time scaling techniques can be combined with the 

earlier strategies. One can imagine a small, efficient model (BitNet or Mamba) that also 

employs speculative decoding, uses self-consistency voting, and has adapters for 

domain specialization – layering multiple efficiency and quality boosts. The exciting 

implication is that  resource-constrained environments can achieve top-tier AI 

performance by smart utilization of compute, rather than brute-force scaling . By 

optimally using every FLOP at inference, whether through ensembling or iterative 

thinking, even a device with a single GPU or a few CPU cores can produce results on par 

with far larger systems. This democratizes access to powerful GenAI: instead of 

needing the latest 100B-parameter model, one can deploy a lean open-source model 

and rely on these inference hacks to punch above its weight. 

Across model design, distributed systems, and clever decoding, the open-source 
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community has made remarkable progress in making GenAI inference efficient and 

accessible. Efficient architectures (quantized, hybrid, or recurrence-based) slash the 

per-token cost. Split and collaborative inference leverage every device and model in 

concert, rather than depending on a single heavy model. Decentralized and federated 

schemes enable scaling out with community resources while respecting data 

boundaries. And importantly, the emphasis on SLMs – training or adapting smaller 

models – acknowledges the reality that “small is beautiful” when resources are scarce. 

By further augmenting SLMs with test-time computation tricks and modular adapters, 

their performance can approach that of unwieldy LLMs at a fraction of the 

infrastructure demands. 

For researchers, policymakers, and developers in Asia, Africa, Latin America, and 

elsewhere, these developments are empowering. They mean that state-of-the-art 

language technology no longer strictly requires state-of-the-art hardware –  ingenious 

algorithms and collaboration can overcome the resource gap . As open benchmarks 

and leaderboards begin to account for efficiency (e.g. “tokens per dollar” competitions), 

we see a shift in AI towards frugality and inclusion. The survey of techniques here 

provides a toolkit for building large-scale AI services in low-resource settings: from 

choosing the right model architecture and size, to distributing inference across clients 

and servers, to using multiple small models and extra compute to boost accuracy. The 

overarching trend is clear: efficient GenAI inference is becoming practical everywhere, 

through open-source innovation that makes “doing more with less” a reality in the 

realm of AI. 

14. Recommendations 
Bringing all these threads together, we provide concrete recommendations for various 

stakeholders – from national policymakers to enterprise AI leaders – on how to 

minimize pretraining burdens and enable scalable AI adoption under constrained 

resources. 

 
100 



                                                                                                                                            

14.1 Practical Roadmaps for Different Resource 

Profiles 

For Nations / Large Consortiums: If you have moderate infrastructure (e.g. a national 

supercomputer with a few hundred GPUs), consider a stepwise approach: 

1.​ Start with an open base model that aligns with your size constraints (for 

instance, a 7B or 13B model if you cannot train 100B). Leverage a model like 

LLaMA, Qwen, or Deepseek  as the foundation – this saves you an order of 

magnitude in cost.​

 

2.​ Identify critical domains and languages and gather data (even if small) for those. 

Prioritize continuous pretraining or fine-tuning on those domains to specialize 

the model. For example, a country might focus on government documents, local 

news, and any public bilingual text to improve local language capability.​

 

3.​ Use parameter-efficient fine-tuning extensively. Rather than one monolithic 

model trying to do everything, train adapters for specific tasks (e.g. an adapter 

for healthcare inquiries, one for tourism information). Maintain a repository of 

these adapters (and their training data provenance) for reuse.​

 

4.​ Validate via benchmark tests relevant to your use cases (like a local language QA 

test, or a business process automation test). Iteratively improve by adding data 

or adjusting training based on where the model falls short.​

 

5.​ Encourage domestic expertise development: involve local universities in 

creating and reviewing training datasets and in building human feedback loops 

to align the model with cultural norms (this could be via a crowd-sourced effort 

to label or rank model outputs in the local language). 
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Start with the state of the art open base model, build post training and data 

processing recipes to maximise optimal results and value. Build up the initial 

momentum through opensource system with the least possible costs to build up 

a positive feedback loop to be able to exponentially grow value generation, 

investments, knowledge generation and adoption from local, foreign 

investors/enterprises/startups in the regional AI initiatives. 
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​

 

Year North-Star Objective Core Actions (Tech + 

Policy + Community) 

Expected Outputs & 

KPIs 

Feedback-Loop 

Levers 

0 – 1 “Seed” Bootstrap one 

working LLM that 

speaks local 

languages & proves 

ROI 

• Download an open 7 

B–13 B base model 

(e.g. LLaMA-2).• 

Fine-tune with LoRA 

/ QLoRA on a single 

48 GB GPU or 

Apple-Silicon lab 

server; target < $3 k 

spend. (arxiv.org, 

arxiv.org) • 

Crowd-collect ~20 k 

high-quality prompts 

in 2–3 official 

languages; use 

Alpaca-style 

synthetic expansion 

to 50 k prompts. 

(medium.com) • 

Launch a public demo 

bot; require 

government and two 

local banks to pilot 

use-cases. 

• Local-language 

chatbot with ≥70 % 

helpfulness rating.• 5 

pilot integrations 

(justice help-desk, 

ag-advice SMS, etc.).• 

20 volunteer GPUs 

registered for future 

use. 

Pilot 

savings/revenues 

fund next GPU 

purchases; demo 

success attracts press 

→ talent signup. 

2 “Sprout” Turn pilots into 

shared assets & seed 

community 

• Publish model 

weights + LoRA 

adapters in a national 

hub (Git-based).• Join 

Masakhane-style 

research 

collaboratives; host 4 

hackathons. 

(arxiv.org) • Spin up a 

Petals swarm; target 

100 volunteer GPUs 

(universities, telcos). 

(research.yandex.com) 

• Government 

micro-grants: $50 k 

total for 10 student 

• 30 LoRA adapters 

online.• 100 M 

inference 

tokens/month served 

via swarm.• First 3 

GenAI startups 

incorporated. 

Open-source adapters 

→ faster prototypes → 

more demos → more 

volunteers donating 

GPUs/data. 
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Year North-Star Objective Core Actions (Tech + 

Policy + Community) 

Expected Outputs & 

KPIs 

Feedback-Loop 

Levers 

teams building 

domain adapters 

(health, fintech, 

tourism). 

3 “Scale” Establish local 

compute & talent 

flywheel 

• Procure a modest 

on-prem cluster: 128 

mid-range GPUs + 1 

PB NVMe.• Require 

cluster time credits be 

repaid as open 

artifacts (data 

cleaned, adapters, eval 

sets).• Launch 

national RLHF 

boot-camp (200 

annotators part-time; 

reward-model built 

for safety & cultural 

norms).• Create a 

sovereign model 

catalogue (mirrors 

Hugging Face; offline 

access). 

• 500 B tokens of local 

corpora cleaned.• 10 

reward models 

(safety, tone, 

factuality).• 20 % of 

university CS grads 

complete GenAI 

electives. 

Credits-for-compute 

trades outputs for 

wider community use 

⇒ compound reuse of 

data & code. 

4 “Harvest” Commercialize & 

reinvest 

• Public–private 

GenAI fund (seed $5 

M) offers matched 

investments to 

startups using 

catalogue assets.• 

Release first 30 B 

multilingual model 

continuously 

pretrained on local 

data.• Push 

retrieval-augmented 

micro-services to 

edge (phones, telco 

POPs) for low-latency 

citizen apps.• Export 

AI translation API to 

neighboring 

states—begin foreign 

• 25 funded startups; 

1,000 local jobs.• 10× 

growth in inference 

calls; 40 % served on 

edge CPUs.• Export 

revenue covers ≥25 % 

of national GPU 

OPEX. 

 

 

Startup exits & export 

fees finance cluster 

expansion; success 

stories pull diaspora 

talent home. 

(wired.com) 
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Year North-Star Objective Core Actions (Tech + 

Policy + Community) 

Expected Outputs & 

KPIs 

Feedback-Loop 

Levers 

revenue. 

5 “Flywheel” Self-sustaining, 

regionally 

competitive 

ecosystem 

• Upgrade cluster to 

≥1 k GPUs (mix of 

local OEM, 

refurbished, 

heterogeneous).• Host 

regional GenAI 

summit; open 

cross-border Petals 

mesh (≥1 k GPUs).• 

Standardize 

open-adapter 

marketplace with 

revenue-sharing 

smart contracts 

(on-chain 

accounting).• 

Incubate ASIC design 

pilot for 4-bit 

inference accelerator 

with university fab 

partner. 

• Nation’s models 

rank in top-5 on 

African LLM 

leaderboard.• Annual 

AI export revenue 

≥$50 M.• Net positive 

GPU trade balance 

(buy partly funded by 

royalties). 

Marketplace royalties 

+ export cash feed 

R&D; public success 

story attracts further 

volunteers and 

foreign investment → 

reinforcing growth 

loop. 

 

Key Risk-Mitigation Tactics 

1.​ Multi-vendor hardware stack avoids single-supplier shocks; software built on 

device-agnostic runtimes. 

2.​ National model catalogue mirrors global hubs to guard against external 

takedowns. 

3.​ Continuous adapter updates prevent catastrophic forgetting while absorbing 

new data without full retrains. 

4.​ RLHF reward models encode local norms, reducing reliance on foreign 

moderation tooling. 
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Sources:  This survey is based on a range of recent papers, repositories, and technical 

reports. Key references include Microsoft’s BitNet work on 1-bit LLMs, the Mamba 

state-space model paper and Hybrid Mamba evaluations, MIT’s research on Liquid 

Neural Networks, the FlashMLA inference optimization note, and the NoMAD and 

ShiftAdd multiplication-free attention papers. For split and collaborative inference, we 

cited the SplitLLM report, Jupiter system results, and hybrid edge-cloud experiments. 

Collaborative decoding techniques referenced Google’s speculative decoding blog, as 

well as the EAGLE and Medusa projects. Distributed inference insights came from the 

Petals paper and others, while prompt routing and multi-model collaboration were 

illustrated by the P2L paper and Shen et al.’s collaborative decoding work. Finally, for 

SLM usage and test-time scaling, we drew on surveys and analyses that highlight the 

competitive performance of fine-tuned small models and the power of inference-time 

computation scaling. These and other references provide further technical details and 

benchmark results supporting the statements in this survey. 
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